
Mathematical Foundation of Quantum
Computing

量子計算之數學基礎

鄭經斅

Contents

1 Logic Circuits 1
1.1 Classical Logic Gates . 1

1.1.1 The NOT gate . 2
1.1.2 The AND gate and the OR gate . 2
1.1.3 The NAND gate and the NOR gate 3
1.1.4 The XOR gate and the XNOR gate 4
1.1.5 The TOFFOLI gate . 5

1.2 Universal Gates . 5
1.3 How A Classical Computer Adds Numbers 11

1.3.1 Binary numbers . 11
1.3.2 Adder using logic circuits . 13

1.4 Classical Circuits . 15

2 Quantum Computing 16
2.1 Quantum Mechanics . 17

2.1.1 Schrödinger equation . 17
2.1.2 Superposition . 18
2.1.3 Measurement . 19
2.1.4 Unitary evolution . 20

2.2 Qubits and Quantum Gates . 21
2.2.1 Quantum bits . 22
2.2.2 Quantum gates . 22

2.3 Quantum Registers . 27
2.3.1 Tensor product of quantum registers - preview 29
2.3.2 Entanglement . 31

i

2.4 Quantum Circuits . 32
2.4.1 Quantum Teleportation . 35

2.5 Universality of Various Sets of Elementary Gates 37
2.6 Quantum Parallelism . 38
2.7 The Early Algorithms . 39

2.7.1 Deutsch-Jozsa . 40
2.7.2 Bernstein-Vazirani . 42

3 Mathematical Backgrounds 43
3.1 Vector Spaces and Linear Maps . 43

3.1.1 Vector Spaces . 43
3.1.2 Linear maps and their matrix representation 45
3.1.3 Algebraic dual spaces . 47

3.2 Direct Sum of Vector Spaces and Multi-Linear Maps 49
3.2.1 Direct sum of vector spaces . 49
3.2.2 Multi-linear maps . 50

3.3 Inner Product Spaces and Hilbert Spaces . 51
3.4 Dual Spaces and Adjoint Operators . 56
3.5 Unitary Operators and Unitary Matrices . 61

3.5.1 Unitary operators . 61
3.5.2 Unitary matrices . 63

3.6 Quantum Mechanics . 65
3.7 Tensor Product of Vector Spaces . 69

3.7.1 Tensor product . 69
3.7.2 Correspondence between tensor product and quantum circuits 79
3.7.3 More examples . 81

3.8 Unitary Decomposition . 100
3.8.1 1-qubit gate decomposition . 100
3.8.2 Singular value decomposition . 102
3.8.3 The CS decomposition . 105
3.8.4 Decomposition of arbitrary quantum gates 108

3.9 Implementation of Multi-Controlled Rotation Gates 113

ii

4 Simon’s Algorithm 123
4.1 Simon’s Problem . 123
4.2 The Quantum Algorithm . 124
4.3 Classical Algorithms for Simon’s Problem 126

4.3.1 Upper bound . 126
4.3.2 Lower bound . 126

5 The Fourier Transform 129
5.1 The Classical Discrete Fourier Transform . 129
5.2 The Fast Fourier Transform . 130
5.3 Application: Multiplying Two Polynomials 131
5.4 The Quantum Fourier Transform . 133
5.5 Application: phase estimation . 136

6 Shor’s Factoring Algorithm 138
6.1 RSA Encryption . 138

6.1.1 Mathematical foundation . 138
6.1.2 Encryption based on factoring large numbers 144

6.2 Reduction from Factoring to Period-finding 147
6.3 Shor’s Period-finding Algorithm . 149
6.4 Continued fractions . 152
6.5 Efficiency of Shor’s Algorithm . 154

6.5.1 Shor’s period-finding algorithm . 154
6.5.2 The period of f(a) = xa mod N is most likely even 159

7 Grover’s Search Algorithm 173
7.1 The Problem . 173
7.2 Grover’s Algorithm . 173
7.3 Amplitude Amplification . 178

8 The HHL Algorithm 179
8.1 The Linear System Problem . 179
8.2 The Basic HHL Algorithm for Linear Systems 180

8.2.1 Detailed quantum algorithm . 182

Chapter 1

Logic Circuits

1.1 Classical Logic Gates
In a classical computer the processor essentially performs nothing more than a sequence
of transformations of a classical state into another one. In mathematical terminology, a
classical processor performs a sequence of evaluation of maps of the form

f : t0, 1un Ñ t0, 1um

x ÞÑ f(x)
(1.1)

This is what we will refer to as the classical computational process, which is realized with
a concatenation of classical gates and circuits.

Definition 1.1. A classical logical gate, also called a Boolean function, is a map
g : t0, 1un Ñ t0, 1u

(x1, ¨ ¨ ¨ , xn) ÞÑ g(x1, ¨ ¨ ¨ , xn)
.

We define an extended classical logical gate g as a map
g : t0, 1un Ñ t0, 1um

(x1, ¨ ¨ ¨ , xn) ÞÑ
(
g1(x1, ¨ ¨ ¨ , xn), ¨ ¨ ¨ , gm(x1, ¨ ¨ ¨ , xn)

) ,

where each gj is a classical logic gate. A classical gate g is called reversible if it is a bijection
and thus invertible.

Example 1.2. The addition ‘ on Z2 defined by

a ‘ b ” a+ b ´ 2ab @ a, b P t0, 1u (1.2)

can be treated as a classical logic gate from t0, 1u2 to t0, 1u given by

(a, b) ÞÑ a ‘ b @ a, b P t0, 1u .

1

2

In the following sub-sections, we introduce some important classical logic gates.

1.1.1 The NOT gate

The NOT gate, also called an inverter, is a logic gate (from t0, 1u to t0, 1u) which implements
logical negation. It behaves according to the truth table below:

INPUT OUTPUT
0 1
1 0

The analytical form of the NOT gate is given by NOT(a) = 1 ´ a for a P t0, 1u. We note
that the NOT gate is reversible, and the inverse of the NOT gate is itself.

Figure 1.1: Traditional NOT Gate (Inverter) symbol

1.1.2 The AND gate and the OR gate

The AND gate (及閘) is a basic digital logic gate (from t0, 1u2 to t0, 1u) that implements
logical conjunction, and the OR gate (或閘) is a digital logic gate that implements logical
disjunction. They behave according to the truth tables below:

INPUT OUTPUT
A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

INPUT OUTPUT
A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

Analytically, the function of AND finds the product of binary digits, while the function
of OR finds the maximum between two binary digits; that is,

AND(a, b) = a ¨ b and OR(a, b) = maxta, bu @ a, b P t0, 1u .

The logic gate symbols for the AND and OR gates are

3

Figure 1.2: Logic gate symbols for AND (left) and OR (right) gates

We note that the AND gate and the OR gate are not reversible.

1.1.3 The NAND gate and the NOR gate

The NAND gate (NOT-AND，反及閘) is a logic gate whose output is complement to that
of an AND gate. In other words, the NAND gate produces an output which is false only
if all its inputs are true. On the other hand, the NOR gate (NOT-OR，反或閘) is a logic
gate whose output is complement to that of an OR gate. They behave according to the
truth tables below:

INPUT OUTPUT
A B A NAND B
0 0 1
0 1 1
1 0 1
1 1 0

INPUT OUTPUT
A B A NOR B
0 0 1
0 1 0
1 0 0
1 1 0

The logic gate symbols for the NAND and NOR gates are

Figure 1.3: Logic gate symbols for NAND (left) and NOR (right) gates

We also note that the NAND gate and the NOR gates are not reversible.

4

1.1.4 The XOR gate and the XNOR gate

The XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR，互斥或
閘) is a digital logic gate (from t0, 1u2 to t0, 1u) that gives a true (1 or HIGH) output when
the number of true inputs is odd. If both inputs are false (0 or LOW) or both are true, a
false output results. XOR represents the inequality function; that is, the output is true if
the inputs are not alike otherwise the output is false. XOR can also be viewed as addition
modulo 2. As a result, XOR gates are used to implement binary addition in computers.

The XNOR gate (sometimes ENOR, EXNOR or NXOR and pronounced as Exclu-
sive NOR，反互斥或閘) is a digital logic gate whose function is the logical complement
of the Exclusive OR (XOR) gate. The XOR and XNOR gates behave according to the
truth table below:

INPUT OUTPUT
A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

INPUT OUTPUT
A B A XNOR B
0 0 1
0 1 0
1 0 0
1 1 1

The analytic form of the XOR and the XNOR gate, respectively, are

XOR(a, b) = a ‘ b = a+ b ´ 2ab @ a, b P t0, 1u ,

XNOR(a, b) = 1 ‘ a ‘ b = 1 + 2ab ´ a ´ b @ a, b P t0, 1u .

The logic gate symbols for the XOR and XNOR gates are

Figure 1.4: Logic gate symbols for XOR and XNOR gates

Similar to the AND, OR, NAND and NOR gates, the XOR and XNOR gates are
not reversible.

5

1.1.5 The TOFFOLI gate

The Toffoli gate, also called CCNOT (pronounced controlled-controlled-not) gate, is a dig-
ital logic gate which behaves according to the truth table below:

INPUT OUTPUT
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

The analytic form of the Toffoli gate is

TOF(a, b, c) = (a, b, ab ‘ c) @ a, b, c P t0, 1u

and the symbol for the Toffoli gate is

Figure 1.5: Circuit representation of Toffoli gate

The n-bit Toffoli gate is a generalization of Toffoli gate. It takes n bits x1, x2, ¨ ¨ ¨ , xn
as inputs and outputs n bits: the first n−1 output bits are just x1, ¨ ¨ ¨ , xn´1, and the last
output bit is x1x2 ¨ ¨ ¨xn´1 ‘ xn.

1.2 Universal Gates
Universal gates can be “combined” to perform “all” Boolean functions. Before talking about
the precise definition of the universality of classical logic gates, we need to introduce two
basic operations that can be easily performed by classical computers (via storing/swapping
data in the memory, maybe?).

Definition 1.3. 1. Let n, ℓ P N and ℓ ď n. For a pairwise distinct set tj1, ¨ ¨ ¨ , jℓu Ď

t1, ¨ ¨ ¨ , nu, the restriction and/or re-ordering operation r(n)j1j2¨¨¨jℓ
is a classical gate

6

from t0, 1un to t0, 1uℓ given by

r
(n)
j1j2¨¨¨jℓ

(x1, ¨ ¨ ¨ , xn) = (xj1 , xj2 , ¨ ¨ ¨ , xjℓ) .

2. Let n, ℓ P N. For a given point (y1, y2, ¨ ¨ ¨ , yℓ) P t0, 1uℓ and a pairwise distinct set
tj1, ¨ ¨ ¨ , jℓu Ď t1, 2, ¨ ¨ ¨ , n + ℓu, the padding operation p

(n)
y1,¨¨¨ ,yℓ ;j1,¨¨¨ ,jℓ

is a classical
gate from t0, 1un to t0, 1un+ℓ given by

p
(n)
y1,¨¨¨ ,yℓ ;j1,¨¨¨ ,jℓ

(x1, ¨ ¨ ¨ , xn) = (z1, ¨ ¨ ¨ , zn+ℓ) ,

where

zk =

#

xk´#tr Ptj1,¨¨¨ ,jℓu | răku if k R tj1, j2, ¨ ¨ ¨ , jℓu ,

yjr if k P tj1, j2, ¨ ¨ ¨ , jℓu and k = jr .

In other words, the padding operation p(n)y1,¨¨¨ ,yℓ;j1,¨¨¨ ,jℓ
inserts pre-determined bit values

y1, ¨ ¨ ¨ , yℓ P t0, 1u at pre-determined slots j1, ¨ ¨ ¨ , jℓ P t1, ¨ ¨ ¨ , n+ ℓu.

Definition 1.4. Let tg1, g2, ¨ ¨ ¨ , gku be a collection of classical gates. The collection of
all gates that can be constructed from g1, g2, ¨ ¨ ¨ , gk, denoted by F [g1, ¨ ¨ ¨ , gk], is the set
satisfying the following construction rules:

1. For any 1 ď j ď k, gj P F [g1, ¨ ¨ ¨ , gk].

2. For any y1, ¨ ¨ ¨ , yℓ P t0, 1u and pairwise distinct j1, ¨ ¨ ¨ , jℓ P t1, ¨ ¨ ¨ , n + ℓu, where
ℓ, n P N,

p
(n)
y1,¨¨¨ ,yℓ ;j1,¨¨¨ ,jℓ

P F [g1, ¨ ¨ ¨ , gk] .

3. For any pairwise distinct j1, ¨ ¨ ¨ , jℓ P t1, ¨ ¨ ¨ , ℓu, where ℓ, n P N and ℓ ď n,

r
(n)
j1j2¨¨¨jℓ

P F [g1, ¨ ¨ ¨ , gk] .

4. Compositions of elements of F [g1, ¨ ¨ ¨ , gk] belong to F [g1, ¨ ¨ ¨ , gk]; that is, for any
h1 : t0, 1un Ñ t0, 1um and h2 : t0, 1uℓ→t0, 1un, we have

h1, h2 P F [g1, ..., gk] ñ h1 ˝ h2 P F [g1, ..., gk] .

5. Cartesian products of elements of F [g1, ¨ ¨ ¨ , gk] belong to F [g1, ¨ ¨ ¨ , gk]; that is, for
any h = (h1, ¨ ¨ ¨ , hm) : t0, 1un Ñ t0, 1um and k = (k1, ¨ ¨ ¨ , kq) : t0, 1up Ñ t0, 1uq, we
have

h, k P F [g1, ¨ ¨ ¨ , gk] ñ h ˆ k P F [g1, ¨ ¨ ¨ , gk] ,

7

where h ˆ k : t0, 1un+p Ñ t0, 1um+q is the Cartesian product of h and k defined by

(h ˆ k)(x1, ¨ ¨ ¨ , xn+p)

=
(
h1(x1, ¨ ¨ ¨ , xn), ¨ ¨ ¨ , hm(x1, ¨ ¨ ¨ , xn), k1(xn+1, ¨ ¨ ¨ , xn+p), ¨ ¨ ¨ , kq(xn+1, ¨ ¨ ¨ , xn+p)

)
.

Example 1.5. Let ID be classical gates given by

ID(a) = a @ a P t0, 1u .

Then ID(a) = AND(a, 1) = (AND ˝ p
(1)
1;2)(a) which implies that

ID = AND ˝ p
(1)
1;2 .

Therefore, ID P F [AND].

Example 1.6. For n P N, let COPY(n) be the classical gate given by

COPY(n)(a) = (a,a) @ a P t0, 1un, .

Using the identity

(COPY(1) ˆ ¨ ¨ ¨ ˆ COPY(1))(a1, ¨ ¨ ¨ , an) = (a1, a1, a2, a2, ¨ ¨ ¨ , an, an) @ a1, ¨ ¨ ¨ , an P t0, 1u ,

we find that

COPY(n) = r
(2n)
1,3,¨¨¨ ,2n´1,2,4,¨¨¨ ,2n ˝ COPY(1) ˆ ¨ ¨ ¨ ˆ COPY(1)

l jh n

n copies of COPY(1)

.

Therefore, COPY(n) P F [COPY(1)] for all n P N.

Example 1.7. Let COPY(1) be classical gates given in the previous example. Then for
a, b, c P t0, 1u,(
(ID ˆ IDˆXOR) ˝ (ID ˆ IDˆANDˆID) ˝ r

(5)
1,3,2,4,5 ˝ (COPY(1)ˆCOPY(1)ˆID)

)
(a, b, c)

=
(
(ID ˆ IDˆXOR) ˝ (ID ˆ IDˆANDˆID) ˝ r

(5)
1,3,2,4,5

)
(a, a, b, b, c)

=
(
(ID ˆ IDˆXOR) ˝ (ID ˆ IDˆANDˆID)

)
(a, b, a, b, c)

= (ID ˆ IDˆXOR)(a, b,AND(a, b), c) = (a, b, ab ‘ c) = TOF(a, b, c) .

Therefore, TOF P F
[
ID,XOR,AND,COPY(1)

]
. Moreover, Example 1.5 further shows

that TOF P F
[
XOR,AND,COPY(1)

]

8

Example 1.8. In classical complexity theory, a Boolean circuit is a finite directed acyclic
graph with AND, OR, and NOT gates. It has n input nodes, which contain the n input bits
(n ě 0). The internal nodes are AND, OR, and NOT gates. In other words, a Boolean cir-
cuit is an element of F [AND,OR,NOT]. We note that NAND,NOR P F [AND,OR,NOT]
since

NAND = NOT ˝ AND and NOR = NOT ˝ OR .

In the following, we “show” that

F [AND,OR,NOT] = F [NAND] = F [NOR] . (1.3)

To see this, it suffices to show that AND, OR and NOT can be constructed solely by
NAND or NOR. The AND and OR gates can be implemented using NAND or NOR by
the following logic circuit:

Figure 1.6: The construction of the AND and OR gates from the NAND or NOR gates

and the NOT gate can be constructed by NAND or NOR by the following logic circuit:

Figure 1.7: The construction of the NOT gate from the NAND or NOR gates

We also note that the XOR and XNOR gates can be constructed from NAND or
NOR gates to construct these logic gates.

9

Figure 1.8: The construction of the XOR and XNOR gates from the NAND or NOR
gates

Remark 1.9. In the construction of basic logic gate using NAND or NOR, the gate
COPY(1) is used implicitly. In other words, to be more precise (1.3) should be written
as

F [NAND] Ď F [AND,OR,NOT] Ď F [NAND,COPY(1)] ,

F [NOR] Ď F [AND,OR,NOT] Ď F [NOR,COPY(1)] .

The following proposition should be clear.

Proposition 1.10. Let tg1, ¨ ¨ ¨ , gku be a collection of classical gates, and h1, ¨ ¨ ¨ , hℓ P

F [g1, ¨ ¨ ¨ , gk]. Then
F [h1, ¨ ¨ ¨ , hℓ] Ď F [g1, ¨ ¨ ¨ , gk] .

Definition 1.11. A collection G = tg1, ¨ ¨ ¨ , gku of classical gates is said to be universal
if any gate g can be constructed with gates from G; that is, tg1, ¨ ¨ ¨ , gku is universal if
g P F [g1, ¨ ¨ ¨ , gk] for every classical gate g.

Theorem 1.12. The classical TOFFOLI-gate is universal and reversible.

Proof. Since every gate g : t0, 1un Ñ t0, 1um is a Cartesian product ofm gates g1, g2, ¨ ¨ ¨ , gm :

t0, 1un Ñ t0, 1u, it suffices to show the universality only for a gate of the form f : t0, 1un Ñ

t0, 1u, which we shall do by induction in n.

10

Before initiating the induction argument, let us first construct the AND, XOR and
COPY(n) gates using the Toffoli gate. Since

TOF(a, b, 0) = (a, b, ab) and TOF(1, a, b) = (1, a, a ‘ b) @ a, b P t0, 1u ,

we find that

AND(a, b) = ab = (r
(3)
3 ˝ TOF)(a, b, 0) = (r

(3)
3 ˝ TOF ˝ p

(2)
0;3)(a, b) ,

XOR(a, b) = a ‘ b = (r
(3)
3 ˝ TOF)(1, a, b) = (r

(3)
3 ˝ TOF ˝ p

(2)
1;1)(a, b) ,

COPY(1)(a) = (r
(3)
1,3 ˝ TOF)(a, 1, 0) = (r

(3)
1,3 ˝ TOF ˝ p

(1)
1,0;2,3)(a) .

Therefore, AND,XOR,COPY(1) P F [TOF]. Together with Example 1.6, we also conclude
that COPY(n) P F [TOF] for all n P N.

Now we initiate the induction process. First we need to show that TOF is universal for
gates of the form f : t0, 1u Ñ t0, 1u. There are four gates in this case: the identity gate
ID, the NOT gate, the TRUE gate whose output is always 1, and the FALSE gate whose
output is always 0. Note that

TOF(1, 0, a) = (1, 0, a) and TOF(1, 1, a) = (1, 1, 1 ‘ a) @ a P t0, 1u .

Using the identity p(1)1,0;1,2(a) = (1, 0, a), we obtain that

ID(a) = (r
(3)
3 ˝ TOF)(1, 0, a) = (r

(3)
3 ˝ TOF ˝ p

(1)
1,0;1,2)(a) ,

TRUE(a) = (r
(3)
1 ˝ TOF)(1, 0, a) = (r

(3)
1 ˝ TOF ˝ p

(1)
1,0;1,2)(a) ,

FALSE(a) = (r
(3)
2 ˝ TOF)(1, 0, a) = (r

(3)
2 ˝ TOF ˝ p

(1)
1,0;1,2)(a) ,

NOT(a) = (r
(3)
3 ˝ TOF)(1, 1, a) = (r

(3)
3 ˝ TOF ˝ p

(1)
1,1;1,2)(a) .

Therefore, TOF is universal for gates of the form f : t0, 1u Ñ t0, 1u, and as a summary we
have

ID,FALSE,TRUE,NOT,AND,XOR,COPY(n) P F [TOF] . (1.4)

Suppose that TOF is universal for gates of the form f : t0, 1un´1 Ñ t0, 1u. Let f :

t0, 1un Ñ t0, 1u be a classical gate. Let g0, g1 : t0, 1un´1 Ñ t0, 1u be classical gates given by

g0(x1, ¨ ¨ ¨ , xn´1) = f(x1, ¨ ¨ ¨ , xn´1, 0) and g1(x1, ¨ ¨ ¨ , xn´1) = f(x1, ¨ ¨ ¨ , xn´1, 1) ,

and define h : t0, 1un Ñ t0, 1u by

h(x1, ¨ ¨ ¨ , xn) = XOR
(
AND(g0(x1, ¨ ¨ ¨ , xn´1),NOT(xn)),AND(g1(x1, ¨ ¨ ¨ , xn´1), xn)

)
.

For a fixed pxn ” (x1, ¨ ¨ ¨ , xn´1) P t0, 1un´1, there are four cases:

11

1. g0(pxn) = g1(pxn) = 0: in this case

h(x1, ¨ ¨ ¨ , xn) = XOR
(
AND(0,NOT(xn)),AND(0, xn)

)
= 0 = f(x1, ¨ ¨ ¨ , xn) .

2. g0(pxn) = g1(pxn) = 1: in this case

h(x1, ¨ ¨ ¨ , xn) = XOR
(
AND(1,NOT(xn)),AND(1, xn)

)
= 1 = f(x1, ¨ ¨ ¨ , xn) .

3. g0(pxn) = 0 and g1(pxn) = 1: in this case,

h(x1, ¨ ¨ ¨ , xn) = XOR
(
AND(0,NOT(xn)),AND(1, xn)

)
= ID(xn) = f(x1, ¨ ¨ ¨ , xn) .

4. g0(pxn) = 1 and g1(pxn) = 0: in this case,

h(x1, ¨ ¨ ¨ , xn) = XOR
(
AND(1,NOT(xn)),AND(0, xn)

)
=NOT(xn) = f(x1, ¨ ¨ ¨ , xn) .

Therefore, h = f . By the induction assumption, g0, g1 P F [TOF] and the fact that

f = h = XOR ˝ (AND ˆ AND) ˝
(
(g0 ˆ NOT) ˆ (g1 ˆ ID)

)
˝ COPY(n),

we conclude from (1.4) that f P F [TOF]. ˝

Remark 1.13. Since XOR can be constructed using NAND, by Example 1.7 we find that
TOF P F

[
NAND,COPY(1)

]
. Therefore, Theorem 1.12 and Remark 1.9 imply that

F [TOF] = F
[
NAND,COPY(1)

]
= F [AND,OR,NOT] .

1.3 How A Classical Computer Adds Numbers
1.3.1 Binary numbers

In a (classical) computer, each number is stored as a binary number which is a number
expressed in the base-2 numeral system. In an N -bit system, the first bit is always used to
store the information of non-negativity/negativity of the number, and the rest (N ´ 1) bits
are used to express the number (we will not go further into the fixed point or floating point
system).

12

Every non-negative binary number takes the form 0inin´1in´2 ¨ ¨ ¨ i1 (or more precisely,
(0inin´1 ¨ ¨ ¨ i1)2), where ik P t0, 1u for each k, and is the same as the number

2n´1in + 2n´2in´2 + ¨ ¨ ¨ + 2i2 + i1 =
n
ÿ

k=1

2k´1ik (1.5)

in the usual base-10 numeral system. For example, the number 13 in the base-10 numeral
system is expressed as 0 ¨ ¨ ¨ 01101 in the base-2 numeral system.

Every negative binary number takes the form 1inin´1in´2 ¨ ¨ ¨ i1 (or more precisely,
(1inin´1 ¨ ¨ ¨ i1)2), where ik P t0, 1u for each k, and is the same as the number

´2n´1(1 ´ in) ´ 2n´2(1 ´ in´1) ´ ¨ ¨ ¨ ´ 21(1 ´ i2) ´ (1 ´ i1) ´ 1 = ´1 ´

n
ÿ

k=1

2k´1(1 ´ ik)

in the usual base-10 numeral system (here we use the two’s-complement number system -
二補數系統). For example, the number ´13 is 1 ¨ ¨ ¨ 10011 (which is obtained by exchanging
0 and 1 in the binary expression of 13 and the outcome plus 1 is the binary expression of
´13). We also note that the number 1inin´1in´2 ¨ ¨ ¨ i1 is the same as ´2n + 0inin´1 ¨ ¨ ¨ i1,
where 0inin´1 ¨ ¨ ¨ i1 denotes the number given in (1.5).

Example 1.14. Since 7 in the base-10 numeral system is the same as 0 ¨ ¨ ¨ 0111 is the base-2
numeral system, the classical computers compute 7 + 13 and 7 ´ 13 (which is the same as
7 + (´13)) as follows:

7 + 13 = (0 ¨ ¨ ¨ 00111)2 + (0 ¨ ¨ ¨ 01101)2 = (0 ¨ ¨ ¨ 010100)2 = 24 + 22 = 20 ,

7 + (´13) = (0 ¨ ¨ ¨ 00111)2 + (1 ¨ ¨ ¨ 10011)2 = (1 ¨ ¨ ¨ 111010)2 = ´22 ´ 20 ´ 1 = ´6 .

Remark 1.15. For a non-negative integer k = (kn´1kn´2 ¨ ¨ ¨ k0)2, in matlab® kj is the
(j + 1)-th component of the vector x given by

x = de2bi(k, n) .

In other words, x given above lists the lowest bit to the highest bit of k from left to right.
To obtain the bit expression in exactly the same order, we use the flip function so that

(kn´1, kn´2, ¨ ¨ ¨ , k0) = flip(de2bi(k, n)) .

We also remark that in matlab® the input of de2bi has to be non-negative integers (so
it will not output the bit expression of negative integer in the two’s complement number
system).

13

1.3.2 Adder using logic circuits

An adder (加法器) is a digital circuit that performs addition of numbers. In many computers
and other kinds of processors adders are used in the arithmetic logic units or ALU. The
most common adders operate on binary numbers.

‚ Half adder (半加法器)

The half adder adds two single binary digits A and B. It has two outputs, sum (S) and
carry (C, 進位). The carry signal represents an overflow into the next digit of a multi-digit
addition. The sum of A and B is 2C + S. The truth table for the half adder is:

INPUT OUTPUT
A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

The simplest half-adder design, pictured below,

Figure 1.9: The logic diagram of the half adder

incorporates an XOR gate (that gives a true output when the number of true inputs is
odd) for S and an AND gate for C. The Boolean logic for the sum (in this case S) will be
A1B + AB1 (which is (1 ´ A)B + A(1 ´ B)) whereas for the carry (C) will be AB. The half
adder adds two input bits and generates a carry and sum, which are the two outputs of a
half adder.

‚ Full adder (全加法器)

A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit
full-adder adds three one-bit numbers, often written as A, B, and Cin; A and B are the
operands, and Cin is a bit carried in from the previous less-significant stage. The circuit

14

produces a two-bit output. Output carry and sum typically represented by the signals Cout

and S, where the sum of A and B equals 2Cout + S. The truth table for the full adder is:

INPUT OUTPUT
A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A circuit design for the full adder is given below:

Figure 1.10: The logic diagram of the full adder (left) and a schematic symbol for a 1-bit
full adder (right), here Cin and Cout drawn on sides of block to emphasize their use in a
multi-bit adder

We can create a logical circuit using multiple full adders to add N-bit numbers. Each
full adder inputs a Cin, which is the Cout of the previous adder. This kind of adder is called
a ripple-carry adder (RCA), since each carry bit “ripples” to the next full adder. Note
that the first (and only the first) full adder may be replaced by a half adder (under the
assumption that Cin = 0). The following figure provides a symbol for a 4-bit full adder:

15

here two input 4-bit numbers is A = (A3A2A1A0)2, B = (B3B2B1B0)2 and the sum of A and
B is a 5-bit number S = (C4S3S2S1S0)2.

1.4 Classical Circuits
In classical complexity theory, a Boolean circuit is a finite directed acyclic graph with AND,
OR, and NOT gates. It has n input nodes, which contain the n input bits (n ě 0). The
internal nodes are AND, OR, and NOT gates, and there are one or more designated
output nodes. The initial input bits are fed into AND, OR, and NOT gates according
to the circuit, and eventually the output nodes assume some value. We say that a circuit
computes some Boolean function f : t0, 1un Ñ t0, 1um if the output nodes get the right
value f(x) for every input x P t0, 1un.

A circuit family is a collection C = tCnu of circuits, one for each input size n. Each circuit
has one output bit. Such a family recognizes or decides a language L Ď t0, 1u˚ ”

Ť

ně0

t0, 1un

if, for every n and every input x P t0, 1un, the circuit Cn outputs 1 if x P L and outputs
0 otherwise. Such a circuit family is uniformly polynomial if there is a deterministic
Turing machine that outputs Cn given n as input, using space logarithmic in n. Note that
the size (number of gates) of the circuits Cn can then grow at most polynomially with n. It
is known that uniformly polynomial circuit families are equal in power to polynomial-time
deterministic Turing machines: a language L can be decided by a uniformly polynomial
circuit family L P P, where P is the class of languages decidable by polynomial-time Turing
machines. Similarly we can consider randomized circuits. These receive, in addition to the
n input bits, also some random bits (“coin flips”) as input. A randomized circuit computes
a function f if it successfully outputs the right answer f(x) with probability at least 2/3

for every x (probability taken over the values of the random bits). Randomized circuits are
equal in power to randomized Turing machines: a language L can be decided by a uniformly
polynomial randomized circuit family L P BPP, where BPP (“Bounded-error Probabilistic
Polynomial time”) is the class of languages that can efficiently be recognized by randomized
Turing machines with success probability at least 2/3. Because we can efficiently reduce
the error probability of randomzied algorithms (see Appendix B.2), the particular value 2/3

does not really matter here and may be replaced by any fixed constant in (1/2, 1).

Chapter 2

Quantum Computing

Classical computers carry out logical operations using the “definite position of a physical
state” (also called classical state). These are usually binary, meaning its operations are
based on one of two positions. A single state - such as on or off, up or down, 1 or 0 - is
called a bit.

In quantum computing, operations instead use the quantum state of an object. These
states have indefinite/undetermined positions before they are measured, such as the spin of
an electron or the polarisation of a photon. Rather than having a clear position, unmeasured
quantum states occur in a mixed “superposition”, not unlike a coin spinning through the
air before it lands in your hand. These superpositions can be entangled with those of other
objects, meaning their final outcomes will be mathematically related even if we do not know
yet what they are.

In a classical computer, each number is in classical state. Call these states |1y, |2y, ¨ ¨ ¨ , |Ny

(here we treat |1y, ¨ ¨ ¨ , |Ny as N distinct outcomes but not necessarily natural numbers from
1 to N). A superposition of these states is a quantum state

|ψy = α1|1y + α2|2y + ¨ ¨ ¨ + αN |Ny ,

where α1, ¨ ¨ ¨ , αN are complex numbers satisfying |α1|
2+ ¨ ¨ ¨+ |αN |2 = 1 and this particular

quantum state, upon measurement, gives |jy with probability |αj|
2. Quantum comput-

ers perform calculations based on the probability of an object’s quantum state before it
is measured - instead of just 1s or 0s - which means they have the potential to process
exponentially more data compared to classical computers. Quantum computation is the
field that investigates the computational power and other properties of computers based on
quantum-mechanical principles. An important objective is to find quantum algorithms that

16

17

are significantly faster than any classical algorithm solving the same problem.

2.1 Quantum Mechanics
Here we give a brief and abstract introduction to quantum mechanics. In short: a quantum
state is a superposition of classical states, to which we can apply either a measurement or
a unitary operation.

2.1.1 Schrödinger equation

In “continuous” quantum mechanics, the Schrödinger equation for a single non-relativistic
particle with mass m is given by

ih̄
B

B t
ψ =

(
´

h̄

2m
∆+ V

)
ψ in Rn ˆ tt ą 0u , (2.1)

where h̄ « 1.05457181765 ˆ 10´34J ¨ s is the reduced Planck constant, ψ = ψ(x, t) is the
wave function, a function that assigns a complex number to each point x at each time t, and
V = V (x, t) is a real-valued function, called the potential, that represents the environment
in which the particle exists. The square of the absolute value of the wave function at each
point is taken to define a probability density function: given a wave function in position
space ψ(x, t) as above, the function

ˇ

ˇψ(x, t)
ˇ

ˇ

2 denotes the probability density of the presence
of the particle at position x at time t.

Taking the complex conjugate of the Schrödinger equation (2.1), we obtain that

´ih̄
B

B t
sψ =

(
´

h̄

2m
∆+ V

)
sψ

thus
ih̄ sψ

B

B t
ψ = sψ

(
´

h̄

2m
∆+ V

)
ψ , ih̄ψ

B

B t
sψ = ´ψ

(
´

h̄

2m
∆+ V

)
sψ .

Therefore,
ih̄

B

B t
|ψ|2 = ih̄

B

B t
(sψψ) =

h̄

2m

(
ψ∆ sψ ´ sψ∆ψ

)
so that the divergence theorem implies that

ih̄
d

dt

ż

R3

ˇ

ˇψ(x, t)
ˇ

ˇ

2
dx =

h̄

2m

ż

R3

[
ψ(x, t)∆ sψ(x, t) ´ sψ(x, t)∆ψ(x, t)

]
dx = 0 .

Therefore,
ż

R3

ˇ

ˇψ(x, t)
ˇ

ˇ

2
dx is a constant (which is assumed to be 1 if at a certain time this

18

integral is 1). This shows that the probability of the presence of a particle (whose dynamics
is described by (2.1)) at a certain point in R3 is 1. The physical interpretation of this
identity is “the position at which the particle locates is in a superposition of all the points
in R3”.

On the other hand, when you try to figure out the location of the particle by implement-
ing some kind of measurements, you always obtain an unambiguous result. The outcome of
the measurement follows the probability distribution that the probability density function
ˇ

ˇψ(¨, t)
ˇ

ˇ

2 provides: the probability of that the particle locations in the region R Ď R3 at
time t is given by

ż

R

ˇ

ˇψ(x, t)
ˇ

ˇ

2
dx.

Definition 2.1. A quantum state is a mathematical entity that provides a probability
distribution for the outcomes of each possible measurement on a system.

2.1.2 Superposition

In quantum computing, each number is a superposition of “classical numbers”.Consider some
physical system that can be in N different, mutually exclusive classical states. Call these
states |1y, |2y, ¨ ¨ ¨ , |Ny. A superposition of these states is described by the wave function

ϕ(x, t) =

$

’

’

’

&

’

’

’

%

α1 if x = |1y ,
α2 if x = |2y ,
...
αN if x = |Ny ,

where αj is a complex number called the amplitude of |jy in |ϕy, and α1, ¨ ¨ ¨ , αN satisfy
|α1|

2 + |α2|
2 + ¨ ¨ ¨ + |αN |2 = 1. The wave function above is a pure quantum state (usually

just called state) and is usually written as

|ϕy =
N
ÿ

j=1

αj|jy = α1|1y + α2|2y + ¨ ¨ ¨ + αN |Ny .

Intuitively, a system in quantum state |ϕy is in all classical states at the same time! It is
in state |1y with amplitude α1 (and probability |α1|2), in state |2y with amplitude α2 (and
probability |α2|2), and so on. Mathematically, the states |1y, ¨ ¨ ¨ , |Ny form an orthonormal
basis of an N -dimensional Hilbert space (that is, an N -dimensional vector space equipped
with an inner product), and a quantum state |ϕy is a vector in this space.

19

Notation: Let (H, x¨, ¨y) be a Hilbert space over field F. Any vectors v in H is expressed
as |vy. For example, in “continuous” quantum mechanics every quantum state |ψy lives in
the Hilbert space L2(R3). For a vector v P H, the notation xv | is an element in the dual
space of H (see Definition 3.46) satisfying xv |wy ” xv,wy. In other word, for each w P H,
w = αv + βvK for some α P F and xv | : w ÞÑ α}v}2.

2.1.3 Measurement

There are two things we can do with a quantum state: measure it or let it evolve unitarily
without measuring it. We will deal with measurement first.

‚ Measurement in the computational basis

Suppose we measure state |ϕy. We cannot “see” a superposition itself, but only classical
states. Accordingly, if we measure state |ϕy we will see one and only one classical state
|jy. Which specific |jy will we see? This is not determined in advance; the only thing
we can say is that we will see state |jy with probability |αj|

2, which is the squared norm
of the corresponding amplitude αj (|a + ib| =

?
a2 + b2 for a, b P R). Thus observing

a quantum state induces a probability distribution on the classical states, given by the

squared norms of the amplitudes. This implies
N
ř

j=1

|αj|
2 = 1, so the vector of amplitudes has

(Euclidean) norm 1. If we measure |ϕy and see classical state |jy as a result, then |ϕy itself
has “disappeared”, and all that is left is |jy. In other words, observing |ϕy “collapses” the
quantum superposition |ϕy to the classical state |jy that we saw, and all “information” that
might have been contained in the amplitudes αi is gone.

‚ Projective measurement

A somewhat more general kind of measurement than the above “measurement in the com-
putational (or standard) basis” is possible. This will be used only sparsely in the course, so
it may be skipped on a first reading. Such a projective measurement is described by projec-
tors P1, P2, ¨ ¨ ¨ , Pm (m ď N) which sum to identity. These projectors are then pairwise
orthogonal, meaning that PiPj = 0 if i ‰ j. The projector Pj projects on some subspace Hj

of the total Hilbert space H, and every state |ϕy P H can be decomposed in a unique way as

|ϕy =
N
ř

j=1

|ϕjy, with |ϕjy = Pj|ϕy P Hj. Because the projectors are orthogonal, the subspaces

Hj are orthogonal as well, as are the states |ϕjy. When we apply this measurement to the

20

pure state |ϕy, then we will get outcome in Hj with probability }|ϕjy}2 = tr(Pj|ϕyxϕ |) and
the state will then “collapse” to the new state |ϕjy/}|ϕjy} = Pj|ϕy/}Pj|ϕy}.

Example 2.2. A measurement in the standard basis is the specific projective measurement
where m = N and Pj = |jyxj |; that is, Pj projects onto the standard basis state |jy and the

corresponding subspace Hj is the space spanned by |jy. Consider the state |ϕy =
N
ř

j=1

αj|jy.

Note that Pj|ϕy = αj|jy, so applying our measurement to |ϕy will give outcome in Hj with
probability }αj|jy}2 = |αj|

2, and in that case the state collapses to αj |jy

}αj |jy}
=

αj
|αj |

|jy. The

norm-1 factor αj
|αj |

may be disregarded because it has no physical significance, so we end up

with the state |jy as we saw before.

Example 2.3. A measurement that distinguishes between |jy with j ď
N

2
and |jy with

j ą
N

2
corresponds to the two projectors P1 =

ř

jďN/2

|jyxj | and P2 =
ř

jąN/2

|jyxj |. Applying

this measurement to the state

|ϕy =
1

2
|1y +

?
3

?
8

|2y +
1

2
|N ´ 1y +

1
?
8

|Ny ,

where N ě 4, will give outcome 1 with probability }P1|ϕy}2 =
5

8
, in which case the state

collapses to
?
2

?
5

|1y+

?
3

?
5

|2y, and will give outcome 2 with probability }P2|ϕy}2 =
3

8
, in which

case the state collapses to
?
2

?
3

|N ´ 1y +
1

?
3

|Ny.

2.1.4 Unitary evolution

Instead of measuring |ϕy, we can also apply some operation to it; that is, change the state
|ϕy to some other state

|ψy =
N
ÿ

j=1

βj|jy = β1|1y + β2|2y + ¨ ¨ ¨ + βN |Ny .

Quantum mechanics only allows linear operations to be applied to quantum states. What
this means is: if we view a state like |ϕy as an N -dimensional vector [α1, α2, ¨ ¨ ¨ , αN]

T

(sometimes called the “qubit state vector”), then applying an operation that changes |ϕy

21

to |ψy corresponds to multiplying |ϕy with an N ˆ N complex-valued matrix U:

U


α1

α2
...
αN

 =


β1
β2
...
βN

 .

Note that by linearity we have

|ψy = U|ϕy = U
(N
ÿ

j=1

αj|jy
)
=

N
ÿ

j=1

αjU|jy .

Because measuring |ψy should also give a probability distribution, P we have the con-

straint
N
ř

j=1

|βj|
2 = 1. This implies that the operation U must preserve the norm of vectors,

and U always maps a vector of norm 1 to a vector of norm 1. Such a linear map is said to
be unitary and always has an inverse (since Ux = 0 if and only if x = 0), and it follows that
any (non-measuring) operation on quantum states must be reversible: by applying U−1 we
can always “undo” the action of U, and nothing is lost in the process. On the other hand, a
measurement is clearly non-reversible, because we cannot reconstruct |ϕy from the observed
classical state |jy.

2.2 Qubits and Quantum Gates
In the previous sections, we talked about the superposition

|ϕy =
N
ÿ

j=1

αj|jy = α1|1y + α2|2y + ¨ ¨ ¨ + αN |Ny

of N classical states. In a quantum computer, |ϕy is used to expressed a random numbers.
Each such number is created using random bits, called qubits, and every qubit can be
created with different amplitude (or probability) of the 0 and 1 state. A 1-qubit state is
represented in braket notation as |ϕy = α|0y + β|1y, and an n-qubit state is represented as

|ϕy =
2n´1
ÿ

j=0

αj|jy or |ϕy =
2n´1
ÿ

j=0

αj|jn´1 ¨ ¨ ¨ j0y ,

where (0jn´1 ¨ ¨ ¨ j1j0)2 is the binary representation of j; that is,

j = 2n´1jn´1 + 2n´2jn´2 + ¨ ¨ ¨ + 21j1 + j0 .

22

2.2.1 Quantum bits

Definition 2.4 (Qubits). A qubit is a quantum state with two possible outcomes of mea-
surement. A qubit is usually represented by

|ψy = α|0y + β|1y ,

where α, β P C satisfying |α|2 + |β|2 = 1. Two qubits |ψ1y = α1|0y + β1|1y and |ψ2y =

α2|0y + β2|1y are said to be equivalent if there exists θ P R such that (α2, β2) = eiθ(α1, β1).

Remark 2.5. A qubit is more than a two-valued random variable.

Definition 2.6. A Bloch sphere B is a subset of C2 defined by (α, β) P B if and only if
|α|2 + |β|2 = 1. Each point (α, β) P B is represented by

|ψy = eiδ
(

cos θ

2
|0y + eiϕ sin θ

2
|1y

)
,

where θ P [0, π] and ϕ P [0, 2π).

2.2.2 Quantum gates

A unitary transformation that acts on a small numer of qubits (say, at most 3) is often
called a gate, in analogy to classical logic gates. Two simple but important 1-qubit gates
are the bitflip-gate X (which negates the bit; that is, swaps |0y and |1y) and the phaseflip
gate Z (which puts a minus sign “−” in front of |1y). Represented as 2ˆ 2 unitary matrices,
these are

X =

[
0 1
1 0

]
and Z =

[
1 0
0 ´1

]
. (2.2)

23

Remark 2.7. Let |ψy = eiδ
(

cos θ

2
|0y + eiϕ sin θ

2
|1y

)
be a 1-qubit quantum state. Then on

the Bloch sphere,

1. X|ψy is the reflection of |ψy (or the rotation by angel π) about the x-axis); that is,

X|ψy = eiδ
(

cos π ´ θ

2
|0y + e´iϕ sin π ´ θ

2
|1y

)
= ei(δ´ϕ)

(
eiϕ sin θ

2
|0y + cos θ

2
|1y

)
= ei(δ´ϕ)

(
cos θ

2
|1y + eiϕ sin θ

2
|0y

)
.

2. Z|ψy is the reflection of |ψy (or the rotation by angel π) about the z-axis; that is, then

Z|ψy = eiδ
(

cos θ
2

|0y + ei(π+ϕ) sin θ
2

|1y

)
= eiδ

(
cos θ

2
|0y ´ eiϕ sin θ

2
|1y

)
.

Possibly the most important 1-qubit gate is the Hadamard transform, specified by:

H|0y =
1

?
2

|0y +
1

?
2

|1y and H|1y =
1

?
2

|0y ´
1

?
2

|1y .

The Hadamard transform is represented as

H =
1

?
2

[
1 1
1 ´1

]
.

If we apply H to initial state |0y and then measure, we have equal probability of observing
|0y or |1y. Similarly, applying H to |1y and observing gives equal probability of |0y or |1y.
However, if we apply H to the superposition 1

?
2

|0y+
1

?
2

|1y then we obtain |0y: the positive
and negative amplitudes for |1y cancel out! (note that this also means that H is its own
inverse) This effect is called interference, and is analogous to interference patterns between
light or sound waves.

Let us also consider the reflection (or the rotation by angle π) about the y-axis. This
rotation is denoted by Y and is given by

cos θ

2
|0y + eiϕ sin θ

2
|1y

Y
ÞÑ cos π ´ θ

2
|0y + ei(π´ϕ) sin π ´ θ

2
|1y

so that the matrix representation of Y is

Y =

[
0 ´i
i 0

]
.

These three gates X, Y, Z are called the Pauli gates. We note that if A and B are two
different Pauli gates, then AB +BA = 0.

24

Remark 2.8. In principle, the matrix representation of a quantum gate can differ by a
multiple of a constant whose modulus is 1 because these representations give equivalent
quantum states. We choose X, Y and Z in such a way that X2 = Y2 = Z2 = I.

In general, we can consider the rotation by angle τ about the x-axis, y-axis and z-axis.
These rotations are denoted by Rx(τ), Ry(τ) and Rz(τ), respectively.

Theorem 2.9. For τ P R, the matrix representations of Rx(τ), Ry(τ) and Rz(τ) are
respectively given by

Rx(τ) =

 cos τ

2
´i sin τ

2

´i sin τ

2
cos τ

2

 , Ry(τ) =

cos τ

2
´ sin τ

2

sin τ

2
cos τ

2

 , Rz(τ) =

[
e´i τ

2 0
0 ei

τ
2

]
. (2.3)

Proof. Let |ψy be a 1-qubit quantum state

|ψy = cos θ

2
|0y + eiϕ sin θ

2
|1y

whose coordinate on the Bloch sphere is cosϕ sin θi + sinϕ sin θj + cos θk.

1. On the unit sphere, the rotation of the vector cosϕ sin θi + sinϕ sin θj + cos θk with
angle τ about the x-axis is

cosϕ sin θi + (cos τ sinϕ sin θ ´ sin τ cos θ)j + (sin τ sinϕ sin θ + cos τ cos θ)k ,

where the coefficients for j and k are obtained by[
cos τ ´ sin τ
sin τ cos τ

] [
sinϕ sin θ

cos θ

]
=

[
cos τ sinϕ sin θ ´ sin τ cos θ
sin τ sinϕ sin θ + cos τ cos θ

]
.

Suppose that

cosϕ sin θi + (cos τ sinϕ sin θ ´ sin τ cos θ)j + (sin τ sinϕ sin θ + cos τ cos θ)k
= cosφ sinϑi + sinφ sinϑj + cosϑk

for some φ and ϑ. Then

cos2 ϑ
2
=

1 + sin τ sinϕ sin θ + cos τ cos θ
2

, tanφ=
cos τ sinϕ sin θ ´ sin τ cos θ

cosϕ sin θ . (2.4)

Next we show that Rx(τ) with matrix representation given by (2.3) indeed has the
property that

Rx(τ)|ψy = eiδ
(

cos ϑ

2
|0y + eiφ sin ϑ

2
|1y

)

25

for some δ P R. Expanding

 cos τ

2
´i sin τ

2

´i sin τ

2
cos τ

2

 cos θ

2

eiϕ sin θ

2

, it is to show that there

exists δ P R such that

cos τ

2
cos θ

2
+ sinϕ sin τ

2
sin θ

2
´ i cosϕ sin τ

2
sin θ

2
= eiδ cos ϑ

2
, (2.5a)

cosϕ cos τ

2
sin θ

2
+ i
(

sinϕ cos τ

2
sin θ

2
´ cos θ

2
sin τ

2

)
= ei(δ+φ) sin ϑ

2
. (2.5b)

Since (
cos τ

2
cos θ

2
+ sinϕ sin τ

2
sin θ

2

)2
+ cos2 ϕ sin2 τ

2
sin2 θ

2

= cos2 τ

2
cos2 θ

2
+ sin2 τ

2
sin2 θ

2
+ 2 cos τ

2
cos θ

2
sinϕ sin τ

2
sin θ

2

=
(1 + cos τ)(1 + cos θ) + (1 ´ cos τ)(1 ´ cos θ)

4
+

sinϕ sin τ sin θ
2

=
1 + cos τ cos θ + sinϕ sin τ sin θ

2
= cos2 ϑ

2
,

there exists δ P R such that

cos τ

2
cos θ

2
+ sinϕ sin τ

2
sin θ

2
´ i cosϕ sin τ

2
sin θ

2
= eiδ cos ϑ

2
;

thus (2.5a) holds. Moreover, by the fact that Rx(τ) given by (2.3) is unitary, (2.5a)
implies that

ˇ

ˇ

ˇ
cosϕ cos τ

2
sin θ

2
+ i
(

sinϕ cos τ

2
sin θ

2
´ cos θ

2
sin τ

2

)ˇ
ˇ

ˇ

2

= sin2 ϑ

2
, (2.6)

Therefore, to show (2.5b) it suffices to extract the phase information. Computing the
product of the left-hand side of (2.5b) and the complex conjugate of (2.5a), we obtain
that(

cos τ

2
cos θ

2
+ sinϕ sin τ

2
sin θ

2
+ i cosϕ sin τ

2
sin θ

2

)
ˆ

ˆ

[
cosϕ cos τ

2
sin θ

2
+ i
(

sinϕ cos τ

2
sin θ

2
´ cos θ

2
sin τ

2

)]
= cosϕ cos2 τ

2
sin θ

2
cos θ

2
+ cosϕ sin2 τ

2
sin θ

2
cos θ

2

+ i
[

cos2 ϕ sin2 θ

2
sin τ

2
cos τ

2
+ sin2 ϕ sin2 θ

2
sin τ

2
cos τ

2
´ cos2 θ

2
sin τ

2
cos τ

2

+ sinϕ cos2 τ
2

sin θ
2

cos θ
2

´ sinϕ sin2 τ

2
sin θ

2
cos θ

2

]
=

1

2

[
cosϕ sin θ + i(´ cos θ sin τ + sinϕ cos τ sin θ)

]
.

Identity (2.4) then shows that (2.5b) holds.

26

2. The proof of this part is similar to the one in the first part, and the proof is left to
the readers.

3. It is clear that Rz(τ) maps |ψy to the quantum state cos θ

2
|0y+ ei(ϕ+τ) sin θ

2
|1y. There-

fore, the matrix representations of Rz(τ) is given by

Rz(τ) =

[
e´i τ

2 0
0 ei

τ
2

]
. ˝

For a 2 ˆ 2 matrix A (with complex entries) satisfying A2 = I, one has

eiAx =
8
ÿ

k=0

(iAx)k

k!
=

8
ÿ

k=0

i2kA2kx2k

(2k)!
+

8
ÿ

k=0

i2k+1A2k+1x2k+1

(2k + 1)!

=
8
ÿ

k=0

(´1)kx2k

(2k)!
I + i

8
ÿ

k=0

(´1)kx2k+1

(2k + 1)!
A = cosxI + i sinxA .

Using the notation of exponential, we find the matrix representation of Rx(τ), Ry(τ) and
Rz(τ) given in (2.3) in fact can be expressed as

Rx(τ) = exp
(´iτX

2

)
, Ry(τ) = exp

(´iτY
2

)
, Rz(τ) = exp

(´iτZ
2

)
. (2.7)

Before proceeding, we note that for a unit vector a = (ax, ay, az) in R3,

(axX + ayY + azZ)2

= a2xX2 + a2yY2 + a2zZ2 + axay(XY + YX) + axaz(XZ + ZX) + ayax(YZ + ZY)

= (a2x + a2y + a2z)I = I .

Definition 2.10. For a general unit vector a = (ax, ay, az) in R3, the rotation of an 1-qubit
state with angle ϕ about an axis in direction a, denoted by Ra(ϕ), is a 1-qubit quantum
gate given by

Ra(ϕ) = exp
(

´
iϕ

2

(
axX + ayY + azZ

))
= cos ϕ

2
I ´ i sin ϕ

2
(axX + ayY + azZ) .

The matrix representation of Ra(ϕ) is given by

Ra(ϕ) =

 cos ϕ

2
´ iaz sin ϕ

2
´(ay + iax) sin ϕ

2

(ay ´ iax) sin ϕ

2
cos ϕ

2
+ iaz sin ϕ

2

 . (2.8)

27

We will see gates acting on more than one qubit later.

Figure 2.1: Gate model or circuit model of quantum computing - it consists of a lot of qubits,
each qubit represents a digit of a number, and qubits are manipulated using quantum gates.

2.3 Quantum Registers
A quantum register is a system comprising multiple qubits. It is the quantum analog of
the classical processor register. Quantum computers perform calculations by manipulating
qubits within a quantum register.

Remark 2.11. There is a conceptual difference between the quantum and classical register.
A classical register of n bits refers to an array of n flip flops (flip flops - 可儲存狀態 0 或 1
的電路), while a quantum register of n qubits is merely a collection of n qubits.

Classically, information is represented by finite chunks of bits - such as bytes - and
multiples thereof. These are essentially words (x1, x2, x3, ¨ ¨ ¨ , xn) built from the alphabet
t0, 1u; that is, xℓ P t0, 1u for all 1 ď ℓ ď n. Hence, we need 2n classical storage configurations
in order to represent all such words.

A classical two-bit word (x1, x2) is an element of the set t0, 1u ˆ t0, 1u = t0, 1u2, and
classically we can represent the words 00, 01, 10, 11 by storing the first letter x1 (the first bit
or the highest bit) and the second letter x2 (the second bit) accordingly. If we represent each
of these bits quantum mechanically by qubits, we are dealing with a two-qubit quantum
system composed of two quantum mechanical sub-systems. A two-qubit word in a two-quit
quantum system is in superposition

α0|00y + α1|01y + α2|10y + α3|11y , α0, α1, α2, α3 P C, |α0|
2 + |α1|

2 + |α2|
2 + |α3|

2 = 1 ,

28

where |x1x2y denotes the state that the first qubit is in state |x1y and the second qubit is in
state |x2y.

More generally, a quantum register of n qubits has 2n basis states of the form |b1b2 ¨ ¨ ¨ bny.
We will often abbreviate 0 ¨ ¨ ¨ 0 to 0n (so that |0ny = |0 ¨ ¨ ¨ 0y). Since bitstrings of length
n can be viewed as numbers between 0 and 2n−1, we can also write the basis states as
numbers |0y, |1y, |2y, ¨ ¨ ¨ , |2n−1y. In other words, for b = b1b2 ¨ ¨ ¨ bn P t0, 1un we often
use |b12

n´1 + b22
n´2 + ¨ ¨ ¨ + bny to identify |b1b2 ¨ ¨ ¨ bny (b1b2 ¨ ¨ ¨ bn in binary equals b12n´1 +

b22
n´2 + ¨ ¨ ¨ + bn in decimal). A quantum register of n qubits can be in any superposition

α0|0y + α1|1y + ¨ ¨ ¨ + α2n´1|2n ´ 1y =
2n´1
ÿ

j=0

αj|jy ,
2n´1
ÿ

j=0

|αj|
2 = 1 .

The superposition above sometimes is also written as
ř

jPt0,1un
αj|jy.

In an n-qubit quantum system, one can perform measurement on certain qubits. A
measuement of m qubits, where m ă n, is a projective measurement, and the quantum
register

α0|0y + α1|1y + ¨ ¨ ¨ + α2n´1|2n ´ 1y

under such a projective measurement collapses to another quantum register

β0|0y + β1|1y + ¨ ¨ ¨ + β2n´1|2
n ´ 1y ,

where at most 2n´m βj’s are non-zero, and β0, β1, ¨ ¨ ¨ , β2n´1 are determined by the outcomes
of the measurement, the exact position of the qubits on which measurement is performed,
and α0, α1, ¨ ¨ ¨ , α2n´1. For example, if we perform a measurement on the second qubit of
the 3-qubit register

α0|000y + α1|001y + α2|010y + α3|011y + α4|100y + α5|101y + α6|110y + α7|111y

and obtain value 0, then the 3-qubit register above collapses to the quantum register

α0

}α}
|000y +

α1

}α}
|001y +

α4

}α}
|100y +

α5

}α}
|101y

where }α} =
a

|α0|
2 + |α1|

2 + |α4|
2 + |α5|

2.

29

2.3.1 Tensor product of quantum registers - preview

Suppose that two single qubit states |ψ1y = α0|0y+α1|1y and |ψ2y = β0|0y+β1|1y are given,
and a quantum register of two qubits is formed from these two single qubits: the output
of the first and the second qubit of the quantum register upon measurement follows the
distribution given by states |ψ1y and |ψ2y, respectively. This means that when measuring
this particular quantum register, the first qubit outputs |0y or |1y with probability |α1|

2 or
|β1|

2, while the second qubit outputs respectively |0y or |1y with probability |α2|
2 or |β2|

2,
respectively. Therefore, measuring this quantum register of two qubits gives |00y, |01y, |10y

and |11y with probability |α0β0|
2, |α0β1|

2, |α1β0|
2 and |α1β1|

2, respectively. This motivates
us to consider the quantum state of two qubits

|ψy = α0β0|00y + α0β1|01y + α1β0|10y + α1β1|11y .

We will write the quantum state |ψy above as |ψ1y b |ψ2y, called the tensor product of states
|ψ1y and |ψ2y. The detail explanation of the tensor product is given in Section 3.7.

In general, let |ψ1y and |ψ2y be two quantum states of n qubits and m qubits, respectively.
The tensor product of |ψ1y and |ψ2y is a quantum state of (n+m) qubits. Let us first consider
the “continuous” case to illustrate the idea of the tensor product. Suppose that the states
of two non-relativistic particles of the same mass m, labeled as particle 1 and particle 2, are
described by Schrödinger equations

ih̄
B

B t
ψ1 =

(
´

h̄

2m
∆+ V1

)
ψ1 in Rn ˆ tt ą 0u

and
ih̄

B

B t
ψ2 =

(
´

h̄

2m
∆+ V2

)
ψ2 in Rn ˆ tt ą 0u ,

respectively. Then at time t the probability of the presence of particle 1 at location x and
particle 2 at location y is given by

ˇ

ˇψ1(x, t)
ˇ

ˇ

2ˇ
ˇψ2(y, t)

ˇ

ˇ

2
=

ˇ

ˇψ1(x, t)ψ2(y, t)
ˇ

ˇ

2. This motivates
of considering the function ψ(x, y, t) = ψ1(x, t)ψ2(y, t). This function ψ satisfies

ih̄
B

B t
ψ =

(
´

h̄

2m
∆+ V

)
ψ in Rn ˆ Rn ˆ tt ą 0u ,

where V (x, y, t) = V1(x, t) + V2(y, t) and

(∆ψ)(x, y, t) = (∆x +∆y)ψ(x, y, t) = ψ2(y, t)∆xψ1(x, t) + ψ1(x, t)∆yψ2(y, t) .

If there is no interference between the two particles (which is the case if V1 and V2 satisfy
certain conditions), then the state of the “combined system” (meaning that we use (x, y) P

30

Rn ˆ Rn to write the position of these two particles) is described by the wave function ψ:
the probability of the presence of the combined system at location (x, y) at time t is given
by

ˇ

ˇψ(x, y, t)
ˇ

ˇ

2
=

ˇ

ˇψ1(x, t)
ˇ

ˇ

2ˇ
ˇψ2(y, t)

ˇ

ˇ

2. In other words, the state of the combined system is
simply the “product” (which is exactly the tensor product) of the individual states.

Now suppose the states of two qubits are given by |ψ1y = α0|0y + α1|1y and |ψ2y =

β0|0y + β1|1y. Recall that this is a shorthand notation for the quantum states

ψ1(x1) =

"

α0 if x1 = 0 ,
α1 if x1 = 1 ,

and ψ2(x2) =

"

β0 if x2 = 0 ,
β1 if x2 = 1 ,

Then the state of the combined system (which can be used to describe for random numbers
(0)10 = (00)2, (1)10 = (01)2, (2)10 = (10)2 and (3)10 = (11)2, where ψ1 is the state of the
first bit and ψ2 is the state of the second bit) is given by

ψ(x1, x2) ” ψ1(x1)ψ2(x2) =

$

’

’

&

’

’

%

α0β0 if (x1, x2) = (0, 0) ,
α0β1 if (x1, x2) = (0, 1) ,
α1β0 if (x1, x2) = (1, 0) ,
α1β1 if (x1, x2) = (1, 1) ,

which is abbreviated as

|ψy = α0β0|00y + α0β1|01y + α1β0|10y + α1β1|11y .

In general, if
|ψ1y = α0|0y + α1|1y + ¨ ¨ ¨ + α2n´1|2n ´ 1y

and
|ψ2y = β0|0y + β1|1y + ¨ ¨ ¨ + β2m´1|2m ´ 1y

are two quantum states, then

|ψy = |ψ1y b |ψ2y =
(2n´1
ÿ

k=0

αk|ky

)
b

(2m´1
ÿ

ℓ=0

βℓ|ℓy
)
=

2n´1
ÿ

k=0

2m´1
ÿ

ℓ=0

αkβℓ|ky b |ℓy ,

where by writing k = (k1k2 ¨ ¨ ¨ kn)2 and ℓ = (ℓ1ℓ2 ¨ ¨ ¨ ℓm)2,

|ky b |ℓy = |k1k2 ¨ ¨ ¨ knℓ1ℓ2 ¨ ¨ ¨ ℓmy .

Sometimes |ψ1y b |ψ2y is written as |ψ1y|ψ2y.

31

2.3.2 Entanglement

An important property that deserves to be mentioned is entanglement, which refers to
quantum correlations between different qubits. For instance, consider a 2-qubit register
that is in the state

1
?
2

|00y +
1

?
2

|11y .

Such 2-qubit states are sometimes called EPR-pairs in honor of Einstein, Podolsky, and
Rosen, who first examined such states and their seemingly paradoxical properties. Initially
neither of the two qubits has a classical value |0y or |1y. However, if we measure the first
qubit and observe, say, a |0y, then the whole state collapses to |00y. Thus observing the
first qubit immediately fixes also the second, unobserved qubit to a classical value. Since
the two qubits that make up the register may be far apart, this example illustrates some of
the non-local effects that quantum systems can exhibit. In general, a bipartite state |ϕy is
called entangled if it cannot be written as a tensor product |ϕAy b |ϕBy, where |ϕAy lives in
the first space and |ϕBy lives in the second.

At this point, a comparison with classical probability distributions may be helpful. Sup-
pose we have two probability spaces, A and B, the first with 2n possible outcomes, the
second with 2m possible outcomes. A distribution on the first space can be described by
2n parameters (non-negative reals summing to 1; actually there are only 2n−1 degrees of
freedom here) and a distribution on the second by 2m parameters. Accordingly, a product
distribution on the joint space can be described by 2n + 2m parameters. However, an ar-
bitrary (non-product) distribution on the joint space takes 2n+m numbers, since there are
2n+m possible outcomes in total. Analogously, an n-qubit state |ϕAy can be described by
2n parameters (complex numbers whose squared moduli sum to 1), an m-qubit state |ϕBy

by 2m parameters, and their tensor product |ϕAy b |ϕBy by 2n + 2m parameters. However,
an arbitrary (possibly entangled) state in the joint space takes 2n+m numbers, since it lives
in a 2n+m-dimensional space. We see that the number of parameters required to describe
quantum states is the same as the number of parameters needed to describe probability dis-
tributions. Also note the analogy between statistical independence of two random variables
A and B and non-entanglement of the product state |ϕAy b |ϕBy. However, despite the simi-
larities between probabilities and amplitudes, quantum states are much more powerful than
distributions, because amplitudes may have negative parts which can lead to interference
effects. Amplitudes only become probabilities when we square them. The art of quantum

32

computing is to use these special properties for interesting computational purposes.

2.4 Quantum Circuits
A quantum circuit (also called quantum network or quantum gate array) generalizes the
idea of classical circuit families, replacing the AND, OR, and NOT gates by elementary
quantum gates. A quantum gate is a unitary transformation on a small (usually 1, 2, or 3)
number of qubits. We saw a number of examples already in Section 2.2: the bitflip-gate X,
the phaseflip gate Z, the Hadamard gate H. Mathematically, these gates can be composed
by taking tensor products (if gates are applied in parallel to different parts of the register)
and ordinary products (if gates are applied sequentially). Simple examples of such circuits
of elementary gates are given in the next section.

For example, if we apply the Hadamard gate H to each bit in a register of n zeroes,
we obtain 1

?
2n

ř

jPt0,1un
|jy which is a superposition of all n-bit strings. More generally, if we

apply Hbn to an initial state |iy, with i P t0, 1un, we obtain

Hbn|iy =
1

?
2n

ÿ

jPt0,1un

(−1)i‚ j|jy , (2.9)

where i ‚ j =
n
ř

k=1

ikjk denotes the bitwise product of the n-bit strings i, j P t0, 1un. For
instance,

Hb2|01y ” (H|0y) b (H|1y) =
|0y + |1y

?
2

b
|0y ´ |1y

?
2

=
1

2

ÿ

jPt0,1u2

(´1)01‚ j|jy .

The n-fold Hadamard transform Hbn will be very useful for all the quantum algorithms
explained later.

Another important 1-qubit gate is the phase gate Rϕ, which merely rotates the phase of
the |1y-state by an angle ϕ:

Rϕ|0y = |0y and Rϕ|1y = eiϕ|1y .

This corresponds to the unitary matrix

Rϕ =

[
1 0
0 eiϕ

]
.

33

An example of a 2-qubit gate is the controlled-not gate CNOT. It negates the second
bit of its input if the first bit is 1, and does nothing if first bit is 0:

CNOT|aby = |ay b |a ‘ by @ a, b P t0, 1u .

In matrix form, it is

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

More generally, if U is some 1-qubit gate, then the 2-qubit controlled-U gate given by

|0by ÞÑ |0by and |1by ÞÑ |1y b U |by @ b P t0, 1u

corresponds to the following 4 ˆ 4 unitary matrix:
1 0 0 0
0 1 0 0
0 0 u11 u12
0 0 u21 u22

 .

Adding another control register to CNOT, we get the 3-qubit Toffoli gate, also called
controlled-controlled-not (CCNOT) gate. This negates the third bit of its input if both of
the first two bits are 1 so that

CCNOT|abcy = |aby b |ab ‘ cy @ a, b, c P t0, 1u

or more precise,

CCNOT
(
α0|000y + α1|001y + α2|010y + α3|011y + α4|100y + α5|101y + α6|110y + α7|111y

)
= α0|000y + α1|001y + α2|010y + α3|011y + α4|100y + α5|101y + α6|111y + α7|110y

which shows that CCNOTrelative to the basis
␣

|000y, |001y, |010y, |011y, |100y, |101y, |110y, |111y
(

has the matrix form

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

34

The Toffoli gate is important because it is complete for classical reversible computation: any
classical computation can be implemented by a circuit of Toffoli gates.

A quantum circuit is a finite directed acyclic graph of input nodes, gates, and output
nodes. There are n nodes that contain the input; in addition we may have some more input
nodes that are initially |0y (“workspace”). The internal nodes of the quantum circuit are
quantum gates that each operate on at most 2 qubits of the state. The gates in the circuit
transform the initial state vector into a final state, which will generally be a superposition.
We measure some dedicated output bits of this final state to (probabilistically) obtain an
answer.

To draw such circuits, we typically let time progress from left to right: we start with the
initial state on the left. Each qubit is pictured as a wire, and the circuit prescribes which
gates are to be applied to which wires. Single-qubit gates like X and H just act on one wire,
while multi-qubit gates such as the CNOT act on multiple wires simultaneously. When
one qubit “controls” the application of a gate to another qubit, then the controlling wire
is drawn with a dot linked vertically to the gate that is applied to the target qubit. This
happens for instance with the CNOT, where the applied single-qubit gate is X (sometimes
drawn as ‘‘’). Figure 2.1 gives a simple example on two qubits, initially in basis state |00y:
first apply the Hadamard gate H to the first qubit, then CNOT to both qubits (with the
first qubit acting as the control), and then Z to the last qubit.

|0y H

|0y Z

Figure 2.2: Simple circuit for turning |00y into an entangled state

Let A b B denote the map defined by (A b B)(|ay b |by) = (A|ay) b (B|by). Then

|00y
HbI
ÞÑ H|0y b I|0y =

1
?
2

(
|00y + |10y

) CNOT
ÞÑ

1
?
2

(
|00y + |11y

)
IbZ
ÞÑ

1
?
2

(
I|0y b Z|0y + I|1y b Z|1y

)
=

1
?
2

(
|00y ´ |11y

)
.

(2.10)

Therefore, the resulting state of the circuit given in Figure 2.2 is 1
?
2
(|00y ´ |11y).

Note that if we have a circuit for unitary U , it is very easy to find a circuit for the inverse
U´1 with the same complexity: just reverse the order of the gates, and take the inverse of
each gate. For example, if U = U1U2U3, then U´1 = U´1

3 U´1
2 U´1

1 .

35

Example 2.12. One possible implementation of a 2-bit full adder (using CNOT gates and
TOFFOLI gates):

q0

q1

q2

q3

Figure 2.3: Circuit diagram of a quantum full adder

where the inputs are q0 = A, q1 = B, q2 = Cin, and the ouputs are q0 = A, q1 = B,
q2 = Sumout, q3 = Cout.

The validity of that the quantum circuit above is indeed a full adder can be verified by
the following truth table:

INPUT OUTPUT
q3 q2 q1 q0 q3 q2 q1 q0

Cin B A Cout S B A
0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 1 1 0
0 1 1 0 1 0 1 0
0 0 0 1 0 1 0 1
0 1 0 1 1 0 0 1
0 0 1 1 1 1 0 1
0 1 1 1 1 1 1 1

2.4.1 Quantum Teleportation

As an example of the use of elementary gates, we will explain teleportation. Suppose there
are two parties, Alice and Bob. Alice has a qubit α0|0y + α1|1y that she wants to send to
Bob via a classical channel. Without further resources this would be impossible, but Alice
also shares an EPR-pair

1
?
2

(
|00y + |11y

)
with Bob (say Alice holds the first qubit and Bob the second). Initially, their joint state is(

α0|0y + α1|1y
)

b
1

?
2

(
|00y + |11y

)
=

α0
?
2

(
|000y + |011y

)
+
α1
?
2

(
|100y + |111y

)
.

36

The first two qubits belong to Alice, the third to Bob. Alice performs a CNOT on her two
qubits to obtain

α0
?
2

(
|000y + |011y

)
+
α1
?
2

(
|110y + |101y

)
and then a Hadamard transform on her first qubit so that their joint state now becomes

α0

2

[(
|0y + |1y

)
b
(
|00y + |11y

)]
+
α1

2

[(
|0y ´ |1y

)
b
(
|10y + |01y

)]
=
α0

2

(
|000y + |011y + |100y + |111y

)
+
α1

2

(
|010y + |001y ´ |110y ´ |101y

)
=

1

2
|00y b

(
α0|0y + α1|1y

)
+

1

2
|01y b

(
α0|1y + α1|0y

)
+

1

2
|10y b

(
α0|0y ´ α1|1y

)
+

1

2
|11y b

(
α0|1y ´ α1|0y

)
.

Alice then measures her two qubits in the computational basis and sends the result b1b2, a 2

random classical bits, to Bob over a classical channel. In order to recover Alice’s qubit, Bob
applies the transformation Zb1Xb2 , where X is the bitflip-gate and Z is the phaseflip gate
given by (2.2), to the qubit he has now (once Alice makes a measurement, the 3 qubit Bob
has collapses to a qubit). For example, if Alice sent 11 to Bob over a classical channel, Bob
then applies ZX to the qubit α0|1y´α1|0y (which is the qubit Bob has now since Alice’s two
qubits has been measured) and obtain α0|0y + α1|1y which is the qubit Alice has originally.
In fact, if Alice’s qubit had been entangled with other qubits, then teleportation preserves
this entanglement: Bob then receives a qubit that is entangled in the same way as Alice’s
original qubit was.

Note that the qubit on Alice’s side has been destroyed: teleporting moves a qubit from
A to B, rather than copying it. In fact, copying an unknown qubit is impossible. This can
be seen as follows. Suppose C were a 1-qubit copier; that is, C|ϕy|0y = |ϕy|ϕy for every
qubit |ϕy. In particular, C|0y|0y = |0y|0y and C|1y|0y = |1y|1y. But then C would not copy
|ϕy = H|0y =

1
?
2

(
|0y + |1y

)
correctly, since by linearity

C|ϕy|0y =
1

?
2

(
C|0y|0y + C|1y|0y

)
=

1
?
2

(
|0y|0y + |1y|1y

)
‰ |ϕy|ϕy .

Remark 2.13. The fact that copying an unknown qubit is impossible implies that not all
the Boolean function can be implemented by current quantum computers. The lack of the
ability of performing all Boolean functions will put a lot of constraints to the use of quantum
computers.

37

2.5 Universality of Various Sets of Elementary Gates
Similar to Definition 1.4 and 1.11, we have the following

Definition 2.14. Let tU1, ¨ ¨ ¨ , Uku be a collection of quantum gates, where each Uj is an
nj-qubit quantum gate for some nj P N. The collection of all quantum gates that can
be constructed from U1, U2, ¨ ¨ ¨ , Uk, denoted by F [U1, ¨ ¨ ¨ , Uk], is the set satisfying the
following construction rules:

1. For any 1 ď j ď k, Uj P F [U1, ¨ ¨ ¨ , Uk].

2. For any n P N, 1bn P F [U1, ¨ ¨ ¨ , Uk], where 1 denotes the identity gate.

3. For any n-qubit quantum gates V1, V2, we have

V1, V2 P F [U1, ¨ ¨ ¨ , Uk] ñ V1V2 P F [U1, ¨ ¨ ¨ , Uk] .

4. For any two quantum gates V1, V2, we have

V1, V2 P F [U1, ¨ ¨ ¨ , Uk] ñ V1 b V2 P F [U1, ¨ ¨ ¨ , Uk] .

A collection of quantum gates U = tU1, ¨ ¨ ¨ , Uku is called universal if any quantum gate U
can be constructed with gates from U ; that is, for every quantum gate U , U P F [U1, ¨ ¨ ¨ , Uk].

Similar to Proposition 1.10, we have the following

Proposition 2.15. For quantum gates V1, ¨ ¨ ¨ , Vℓ, U1, ¨ ¨ ¨ , Uk, we have

V1, ¨ ¨ ¨ , Vℓ P F [U1, ¨ ¨ ¨ , Uk] ñ F [V1, ¨ ¨ ¨ , Vℓ] Ď F [U1, ¨ ¨ ¨ , Uk] .

In particular, F
[
F [U1, ¨ ¨ ¨ , Uk]

]
= F [U1, ¨ ¨ ¨ , Uk].

Which set of elementary gates should we allow? There are several reasonable choices.

(1) The set of all 1-qubit operations together with the 2-qubit CNOT gate is universal,
meaning that any other unitary transformation can be built from these gates.

Allowing all 1-qubit gates is not very realistic from an implementational point of view, as
there are uncountably many of them. However, the model is usually restricted, only allowing
a small finite set of 1-qubit gates from which all other 1-qubit gates can be efficiently
approximated.

38

Theorem 2.16 (Solovay-Kitaev). Let G be a finite set of elements in SU(2) containing its
own inverses and such that the group xGy they generate is dense in SU(2). There exists
c ą 0 such that for any ε ą 0 and U P SU(2), there is a sequence S of gates from G of length
O(logc(1/ε)) such that }S ´ U} ď ε.

(2) The set consisting of CNOT, Hadamard, and the phase-gate Rπ
4

is universal in the
sense of approximation, meaning that any other unitary can be arbitrarily well ap-
proximated using circuits of only these gates. The Solovay-Kitaev Theorem says that
this approximation is quite efficient: we can approximate any gate on 1 or 2 qubits
up to error ε using polylog(1/ε) gates from our small set; in particular, simulating
arbitrary gates up to exponentially small error costs only a polynomial overhead.

(3) The set of Hadamard H, CNOT, Ry(τ), Rz(τ) (for all τ P R) and SWAP is universal.

It is often convenient to restrict to real numbers and use an even smaller set of gates:

(4) The set of Hadamard and Toffoli (CCNOT) is universal for all unitaries with real
entries in the sense of approximation, meaning that any unitary with only real entries
can be arbitrarily well approximated using circuits of only these gates (again the
Solovay-Kitaev Theorem says that this simulation can be done efficiently).

2.6 Quantum Parallelism
One uniquely quantum-mechanical effect that we can use for building quantum algorithms
is quantum parallelism. Suppose we can build a quantum circuit to represent a boolean
function f : t0, 1un Ñ t0, 1um. Then we can build a quantum circuit U that maps |xy|0y Ñ

|xy|f(x)y for every x P t0, 1un. Now suppose we apply U to a superposition of all inputs x:

U

 1
?
2n

ÿ

xPt0,1un

|xy|0y

 =
1

?
2n

ÿ

xPt0,1un

|xy|f(x)y .

We applied U just once, but the final superposition contains f(x) for all 2n input values x!
However, by itself this is not very useful and does not give more than classical randomization,
since observing the final superposition will give just one random |xy|f(x)y and all other
information will be lost. As we will see below, quantum parallelism needs to be combined
with the effects of interference and entanglement in order to get something that is better
than classical.

39

2.7 The Early Algorithms
The two best-known successes of quantum algorithm so far are Shor’s factoring algorithm
from 1994 and Grover’s search algorithm from 1996, which will be explained in later chapters.
In this section we describe some of the earlier quantum algorithms that preceded Shor’s and
Grover’s. Virtually all quantum algorithms work with queries in some form or other. We
will explain this model here. It may look contrived at first, but eventually will lead smoothly
to Shor’s and Grover’s algorithm.

To explain the query setting, consider an N -bit input x = (x0, x1, ¨ ¨ ¨ , xN´1) P t0, 1uN .
Usually we will have N = 2n, so that we can address bit xi using an n-bit index i P t0, 1un.
One can think of the input as an N -bit memory which we can access at any point of our
choice (a Random Access Memory). A memory access is via a so-called “black-box”, which
is equipped to output the bit xi on input i. As a quantum operation, this would be the
following unitary mapping on n+ 1 qubits:

Ox : |iy|0y ÞÑ |iy|xiy .

The first n qubits of the state are called the address bits (or address register), while the
(n+ 1)-th qubit is called the target bit. Since this operation must be unitary, we also have
to specify what happens if the initial value of the target bit is 1. Therefore we actually let
Ox be the following unitary transformation:

Ox : |iy|by ÞÑ |iy|b ‘ xiy ,

here i P t0, 1un, b P t0, 1u, and ‘ denotes exclusive-or (addition modulo 2). In matrix
representation, Ox is now a permutation matrix and hence unitary. Note also that a quantum
computer can apply Ox on a superposition of various i, something a classical computer
cannot do. One application of this black-box is called a query, and counting the required
number of queries to compute this or that function of x is something we will do a lot in the
first half of these notes.

Given the ability to make a query of the above type, we can also make a query of the
form |iy ÞÑ (−1)xi |iy by setting the target bit to the state |´y ” H|1y =

1
?
2

(
|0y ´ |1y

)
:

Ox(|iy|´y) = |iy
1

?
2

(
|xiy ´ |1 ´ xiy

)
= (−1)xi |iy|´y .

This ˘-kind of query puts the output variable in the phase of the state: if xi is 1 then we get
a −1 in the phase of basis state |iy; if xi = 0 then nothing happens to |iy. This “phase-oracle”

40

is sometimes more convenient than the standard type of query. We sometimes denote the
corresponding n-qubit unitary transformation (ignoring the last qubit |´y) by Ox,˘.

2.7.1 Deutsch-Jozsa

Deutsch-Jozsa problem: For N = 2n, we are given x P t0, 1uN such that either

1. all xi have the same value (“constant”), or

2. N/2 of the xi are 0 and N/2 are 1 (“balanced”).

The goal is to find out whether x is constant or balanced.
The algorithm of Deutsch and Jozsa is as follows. We start in the n-qubit zero state |0ny,

apply a Hadamard transform to each qubit, apply a query (in its ˘-form), apply another
Hadamard to each qubit, and then measure the final state. As a unitary transformation,
the algorithm would be HbnO˘Hbn. We have drawn the corresponding quantum circuit in
Figure 2.4 (where time progresses from left to right).

|0y H

Ox

H

|0y H H

|0y H H

|1y H

|0y H

Ox,˘

H

|0y H H

|0y H H

Figure 2.4: The Deutsch-Jozsa algorithm for n = 3. Left - the usual way of drawing the
circuit (a circuit with the target qubit). Right - Only care about the first n qubits.

Let us follow the state through these operations. Initially we have the state |0ny. Using
(2.9), after the first Hadamard transforms we have obtained the uniform superposition of
all i:

1
?
2n

ÿ

iPt0,1un

|iy .

The O˘-query turns this into
1

?
2n

ÿ

iPt0,1un

(´1)xi |iy .

41

Applying the second batch of Hadamards gives (again by Equation (2.9)) the final superpo-
sition

1

2n

ÿ

iPt0,1un

(´1)xi
ÿ

jPt0,1un

(´1)i‚ j|jy ,

where i ‚ j =
n
ř

k=1

ikjk is the bitwise dot product of i and j as before. Since i ‚ 0n = 0 for all

i P t0, 1un, we see that the amplitude of the |0ny-state in the final superposition is

1

2n

ÿ

iPt0,1un

(´1)xi =

$

&

%

1 if xi = 0 for all i ,
´1 if xi = 1 for all i ,
0 if x is balanced .

Hence the final observation will yield |0ny if x is constant and will yield some other state if
x is balanced. Accordingly, the Deutsch-Jozsa problem can be solved with certainty using
only 1 quantum query and O(n) other operations (the original solution of Deutsch and
Jozsa used 2 queries, the 1-query solution is from [24]). In contrast, it is easy to see that
any classical deterministic algorithm needs N/2 + 1 queries in the worst case scenario: if
it has made only N/2 queries and seen only 0s, the correct output is still undetermined.
However, a classical algorithm can solve this problem efficiently if we allow a small error
probability: just query x at two random positions, output “constant” if those bits are the
same and “balanced” if they are different. This algorithm outputs the correct answer with
probability 1 if x is constant and outputs the correct answer with probability 1/2 if x is
balanced. Thus the quantum-classical separation of this problem only holds if we consider
algorithms without error probability.

Remark 2.17. In a lot of literatures, the Deutsch-Jozsa problem is formulated as: Let
f : t0, 1un Ñ t0, 1u satisfy either f is a constant function or #f ´1(t0u) = #f ´1(t1u) = 2n´1

(such f is said to be balanced). Determine if f is constant or balanced. In such a case, the Ox

operator is usually denoted by Uf , and the quantum circuit for the Deutsch-Jozsa algorithm
is usually drawn as

|0ny Hbn

Uf

Hbn

|1y H

x x

y y ‘ f (x)

Figure 2.5: Another way of drawing the quantum circuit for the Deutsch-Jozsa algorithm

42

Remark 2.18. In general it is not easy to construct a quantum circuit for the oracle Uf ;
however, for some specific f a quantum implementation of Uf is possible. For example, let
f : t0, 1un Ñ t0, 1u be given by f(x) = xn if x = (x1, ¨ ¨ ¨ , xn); that is, the value of f is
identical to the lowest digits of the input. Then Uf = In´1 b CNOT, where In´1 is the
identity map on (n ´ 1) qubit system, since

(In´1 b CNOT)(|xy|yy) = (In´1 b CNOT)(|x1 ¨ ¨ ¨xn´1xny|yy)

= (In´1 b CNOT)(|x1 ¨ ¨ ¨xn´1y|xnyy) =
(
In´1|x1 ¨ ¨ ¨xn´1y

)
b
(
CNOT(|xny|yy)

)
= |x1 ¨ ¨ ¨xn´1y|xny|y ‘ xny = |x1 ¨ ¨ ¨xny|y ‘ xny = |xy|y ‘ f(x)y .

Therefore, Uf can be implemented by the following quantum circuit

|x1 ¨ ¨ ¨xn´1y

Uf|xny

|yy

x x

y y ‘ f (x)

=

Figure 2.6: A quantum circuit for Uf with f(x1, ¨ ¨ ¨ , xn) = xn

2.7.2 Bernstein-Vazirani

Bernstein-Vazirani problem: For N = 2n, we are given x P t0, 1uN with the property
that there is some unknown a P t0, 1un such that xi = (i ‚ a) mod 2. The goal is to find a.

The Bernstein-Vazirani algorithm is exactly the same as the Deutsch-Jozsa algorithm,
but now the final observation miraculously yields a. Since (−1)xi = (−1)(i‚ a) mod 2 =

(−1)i‚ a, we can write the state obtained after the query as:
1

?
2n

ÿ

iPt0,1un

(´1)xi |iy =
1

?
2n

ÿ

iPt0,1un

(´1)i‚ a|iy .

Applying a Hadamard to each qubit will turn this into the classical state |ay and hence solves
the problem with 1 query and O(n) other operations. In contrast, any classical algorithm
(even a randomized one with small error probability) needs to ask n queries for information-
theoretic reasons: the final answer consists of n bits and one classical query gives at most 1
bit of information. Bernstein and Vazirani also defined a recursive version of this problem,
which can be solved exactly by a quantum algorithm in poly(n) steps, but for which any
classical randomized algorithm needs nΩ(logn) steps.

Chapter 3

Mathematical Backgrounds

3.1 Vector Spaces and Linear Maps

3.1.1 Vector Spaces

Definition 3.1. A vector space V over a scalar field F is a set of elements called vectors,
with given operations of vector addition + : VˆV Ñ V and scalar multiplication ¨ : FˆV Ñ

V such that

1. v + w = w + v for all v,w P V.

2. (v + w) + u = v + (u + w) for all u, v,w P V.

3. there exists 0, the zero vector, such that v + 0 = v for all v P V.

4. for each v P V there exists w P V such that v + w = 0.

5. λ ¨ (v + w) = λ ¨ v + λ ¨ w for all λ P F and v,w P V.

6. (λ+ µ) ¨ v = λ ¨ v + µ ¨ v for all λ, µ P F and v P V.

7. (λ ¨ µ) ¨ v = λ ¨ (µ ¨ v) for all λ, µ P F and v P V.

8. 1 ¨ v = v for all v P V.

Remark 3.2. In property 4 of the definition above, it is easy to see that for each v, there
is only one vector w such that v + w = 0. We often denote this w by ´v, and the vector
substraction ´ : V ˆ V Ñ V is then defined (or understood) as v ´ w = v + (´w).

43

44

Example 3.3. Let F be a scalar field. The space Fn is the collection of n-tuple v =

(v1, v2, ¨ ¨ ¨ , vn) with vi P F with addition + and scalar multiplication ¨ defined by

(v1, ¨ ¨ ¨ , vn) + (w1, ¨ ¨ ¨ ,wn) ” (v1 + w1, ¨ ¨ ¨ , vn + wn) ,

α(v1, ¨ ¨ ¨ , vn) ” (αv1, ¨ ¨ ¨ , αvn) .

Then Fn is a vector space over F.

Example 3.4. Let F be a scalar field. The collection of mˆn matrices with entries in F is
denoted by M(m,n;F) or Fmˆn; that is, A P M(m,n;F) if and only if A = [aij]1ďiďm,1ďjďn

for some aij P F. Define the addition + and scalar multiplication ¨ on M(m,n;F) by

A+B = [aij + bij] if A = [aij] and B = [bij]

and
c ¨ A = [c ¨ aij] if A = [aij] .

Then (M(m,n;F),+, ¨) is a vector space over F.

Example 3.5. Let F = R or C, and V be the collection of all real-valued continuous
functions on [0, 1]. The vector addition + and scalar multiplication ¨ is defined by

(f + g)(x) = f(x) + g(x) @ f, g P V ,

(α ¨ f)(x) = αf(x) @ f P V, α P F .

Then V is a vector space over F, and is denoted by C ([0, 1];F). When the scalar field under
consideration is clear, we simply use C ([0, 1]) to denote this vector space.

Definition 3.6 (Vector subspace). Let V be a vector space over scalar field F. A subset
W Ď V is called a vector subspace of V if itself is a vector space over F.

Definition 3.7. Let V be a vector space over a scalar field F. k vectors v1, v2, ¨ ¨ ¨ , vk in V
is said to be linearly dependent if there exists (α1, ¨ ¨ ¨ , αk) Ď Fk, (α1, ¨ ¨ ¨ , αk) ‰ 0 such
that α1v1 + α2v2 + ¨ ¨ ¨ + αkvk = 0. k vectors v1, v2, ¨ ¨ ¨ , vk in V is said to be linearly
independent if they are not linearly dependent. In other words, tv1, ¨ ¨ ¨ , vku are linearly
independent if

α1v1 + α2v2 + ¨ ¨ ¨ + αkvk = 0 ñ α1 = α2 = ¨ ¨ ¨ = αk = 0 .

45

Example 3.8. The k vectors t1, x, x2, ¨ ¨ ¨ , xk´1u are linearly independent in C ([0, 1]) for
all k P N.

Definition 3.9. The dimension of a vector space V is the number of maximum linearly
independent set in V, and in such case V is called an n-dimensional vector space, where n
is the dimension of V. If for every number n P N there exists n linearly independent vectors
in V, the vector space V is said to be infinitely dimensional.

Example 3.10. The space Fn is n-dimensional, and C ([0, 1]) is infinitely dimensional (since
1, x, ¨ ¨ ¨ , xn´1 are n linearly independent vectors in C ([0, 1])).

Definition 3.11 (Basis). Let V be a vector space over F. A collection of vectors tviuiPI in
V is called a basis of V if for every v P V, there exists a unique tαiuiPI Ď F such that

v =
ÿ

αPI
αivi .

For a given basis B = tviuiPI , the coefficients tαiuiPI given in the above relation is denoted
by [v]B.

Example 3.12 (Standard Basis of Fn). Let ei = (0, , ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0), where 1 locates at
the i-th slot. Then the collection teiuni=1 is a basis of the vector space Fn over F since

(α1, ¨ ¨ ¨ , αn) =
n
ÿ

i=1

αiei @αi P F.

The collection teiuni=1 is called the standard basis of Fn.

Example 3.13. Even though
␣

1, x, ¨ ¨ ¨ , xk, ¨ ¨ ¨
(

is a set of linearly independent vectors, it
is not a basis of C ([0, 1]). However, let P([0, 1]) be the collection of polynomials defined on
[0, 1]. Then P([0, 1]) is still a vector space, and

␣

1, x, ¨ ¨ ¨ , xk, ¨ ¨ ¨
(

is a basis of P([0, 1]).

3.1.2 Linear maps and their matrix representation

Definition 3.14. Let V,W be vector spaces over a common scalar field F. A map L from
V to W is said to be linear if L(cv1+v2) = cL(v1)+L(v2) for all v1, v2 P V and c P F. We
often write Lv instead of L(v), and the collection of all linear maps from V to W is denoted
by L (V;W). We also write L (V) instead of L (V;V) if W = V. An element in L (V;F) is
called a linear functional on V.

46

Proposition 3.15. Let V and W be vector spaces over a common scalar field F. Then
L (V;W) is a vector space over F.

Example 3.16. Let F be a scalar field, and A = [aij]1ďiďm,1ďjďn P M(m,n;F) be an mˆn

matrix. Define a vector-valued function L : Fn Ñ Fm by

L(x1, ¨ ¨ ¨ , xn) =
(n
ÿ

j=1

a1jxj,
n
ÿ

j=1

a2jxj, ¨ ¨ ¨ ,
n
ÿ

j=1

amjxj

)
.

Then L P L (Fn,Fm).

From Example 3.16, we see that any mˆn matrix is associated with a linear map. Now
suppose that V and W are vector spaces over a common scalar field F, V is a n-dimensional
vector space with basis B = tvjunj=1, and W is a m-dimensional vector space with basis
rB = twiu

m
i=1. Let L P L (V;W). Since rB is a basis of W, for each 1 ď j ď n there exist

unique a1j, a2j, ¨ ¨ ¨ , amj P F such that Lvj =
m
ř

i=1

aijwi. Moreover, if u P V, then there exist
c1, ¨ ¨ ¨ , cn P F such that

u =
n
ÿ

j=1

cjvj or c = [u]B ,

and by the linearity of L,

Lu = L
(n
ÿ

j=1

cjvj
)
=

n
ÿ

j=1

cjLvj =
n
ÿ

j=1

m
ÿ

i=1

cjaijwi =
m
ÿ

i=1

(n
ÿ

j=1

aijcj

)
wi .

Let bi =
n
ř

j=1

aijcj, and b = [b1, ¨ ¨ ¨ , bm]
T. Then with A denoting the m ˆ n matrix

[aij]1ďiďm,1ďjďn,
[Lu]

rB = b = Ac = A[u]B .

The discussion above induces the following

Definition 3.17. Let V,W be two vector spaces, dim(V) = n and dim(W) = m, and
B, rB are basis of V,W, respectively. For L P L (V;W), the matrix representation of L
relative to bases B and rB, denoted by [L]

rB,B, is the matrix satisfying

[Lu]
rB = [L]

rB,B[u]B @ u P V .

If L P L (V;V), we simply use [L]B to denote [L]B,B.

47

Example 3.18. Let V = span(1, x, ¨ ¨ ¨ , xn´1) and W = span(1, x, ¨ ¨ ¨ , xm´1) withm ě n´1.

Then d

dx
: V Ñ W defined by

d

dx

(n
ÿ

k=1

akx
k´1
)
=

n
ÿ

k=1

ak(k ´ 1)xk´2

is linear, and the matrix representation of d

dx
(relative to the standard basis of V and W) is

m-rows

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%



0 1 0 ¨ ¨ ¨ 0
... 0 2

.
... 0
... . . . 0 (n ´ 1)
... . . . 0
... ...
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0


.

Theorem 3.19. Let V1,V2,V3 be finite dimensional vector spaces, and B1, B2, B3 be basis
of V1, V2, V3, respectively. Then

[TS]B3,B1 = [T]B3,B2 [S]B2,B1 @S P L (V1;V2), T P L (V2;V3) .

Proof. Let S P L (V1;V2) and T P L (V2;V3) be given. For all v P V1,

[TSv]B3 = [T]B3,B2 [Sv]B2 = [T]B3,B2 [S]B2,B1 [v]B1 and [TSv]B3 = [TS]B3,B1 [v]B1 .

Therefore,
[T]B3,B2 [S]B2,B1 [v]B1 = [TS]B3,B1 [v]B1 @ v P V1 ;

thus letting v be any basis vector implies that

[TS]B3,B1 = [T]B3,B2 [S]B2,B1 . ˝

3.1.3 Algebraic dual spaces

In the rest of this section, we will only focus on the space L (V;W) for the case that the
codomain W is the underlying scalar field F. In such a case, we use V 1 to denote L (V;F),
called the algebraic dual space of V.

48

Example 3.20. Let V = Rn. From Linear Algebra we know that V 1 = Rn in the sense that
every f P V 1 corresponds to a unique matrix a ” [a1, ¨ ¨ ¨ , an] P Rn such that

f(x) = a ¨ x

so that we identify f as the vector a P Rn to obtain that V 1 ‘‘=”V.
A bit more generalized version of the result above is that (Cn) 1 = Cn in the sense that

every f P (Cn) 1 corresponds to a unique vector a ” (c1, ¨ ¨ ¨ , cn) P Cn such that

f(z) = c ¨ z =
n
ÿ

j=1

cjzj ,

where cj is the complex conjugate of cj.

We note that the example above shows that dim(Rn) = dim
(
(Rn) 1

)
and dim(Cn) =

dim
(
(Cn) 1

)
. In general, we have the following

Proposition 3.21. Let V be a finite dimensional vector space over field F. Then dim(V 1) =

dim(V).

Proof. Let dim(V) = n and te1, ¨ ¨ ¨ , enu be a basis of V. Define φ1, ¨ ¨ ¨φn by

φi

(n
ÿ

j=1

cjej
)
=

n
ÿ

j=1

cjδij @ 1 ď i ď n and cj P F . (3.1)

Then φ1, ¨ ¨ ¨ , φn P V 1. Moreover, the collection tφ1, ¨ ¨ ¨ , φnu are linearly independent since
if α1, ¨ ¨ ¨ , αn P F verify that

α1φ1 + α2φ2 + ¨ ¨ ¨ + αnφn = 0 (the zero function) ,

we must have
(α1φ1 + α2φ2 + ¨ ¨ ¨ + αnφn)(ej) = 0 @ 1 ď j ď n

which, using (3.1), implies that αj = 0 for all 1 ď j ď n. Therefore, dim(V 1) ě n.
On the other hand, suppose that f P V 1 and f(ej) = dj. If x = x1e1 + ¨ ¨ ¨ + xnen, the

linearity of g implies that

f(x) = f(x1e1 + ¨ ¨ ¨ + xnen) = x1f(e1) + ¨ ¨ ¨ + xnf(en) = d1x1 + ¨ ¨ ¨ + dnxn

49

and (3.1) shows that

(d1φ1 + ¨ ¨ ¨ + dnφn)(x) = (d1φ1 + ¨ ¨ ¨ + dnφn)(x1e1 + ¨ ¨ ¨ + xnen) =
n
ÿ

i=1

diφi

(n
ÿ

j=1

xjej
)

=
n
ÿ

i=1

n
ÿ

j=1

dixjδij =
n
ÿ

i=1

dixi = d1x1 + ¨ ¨ ¨ + dnxn .

Therefore, f = d1φ1+ ¨ ¨ ¨+dnφn which implies that V 1 = span(φ1, ¨ ¨ ¨ , φn). This establishes
that dim(V 1) = n. ˝

3.2 Direct Sum of Vector Spaces and Multi-Linear Maps
3.2.1 Direct sum of vector spaces

Definition 3.22. Given sets A and B, the Cartesian product of A and B, denoted by AˆB,
is the set of all ordered pairs (a, b) with a P A and b P B; that is, A ˆ B =

␣

(a, b)
ˇ

ˇ a P

A and b P B
(

. The Cartesian of three or more sets are defined similarly.
Let X and Y be vector spaces over a common scalar field F. The direct sum of X and

Y , denoted by X ‘ Y , is X ˆ Y with the following vector space structure:

λ ¨ (x1,y1) + (x2,y2) = (λ ¨ x1 + x2, λ ¨ y1 + y2) @λ P F,x1,x2 P X and y1,y2 P Y .

For x P X and y P Y , the ordered pair (x,y) is also written as x ‘ y.

Remark 3.23. 1. The direct sum is a way of getting a new big vector space from two (or
more) smaller vector spaces in the simplest way one can imagine: you just line them
up.

2. Let X,Y be finite dimensional vector spaces over a scalar field F, where F = R or C.
Then X ‘ Y is a finite dimensional vector space over F and dim(X ‘ Y) = dim(X) +

dim(Y) for X‘Y has a basis
␣

x1 ‘ 0,x2 ‘ 0, ¨ ¨ ¨ ,xm ‘ 0, 0 ‘ y1, 0 ‘ y2, ¨ ¨ ¨ , 0 ‘ yn
(

,
where

␣

x1, ¨ ¨ ¨ ,xmu is a basis of X and ty1, ¨ ¨ ¨ ,ynu is a basis of Y .

Definition 3.24. Let X, Y , Z, W be vector spaces over field F, and A P L (X;Z), B P

L (Y ;W). The direct sum of A and B, denoted by A‘B, is a linear map in L (X‘Y, Z‘W)

satisfying that
(A ‘ B)(x ‘ y) = (Ax) ‘ (By) @ x P X,y P Y .

50

Theorem 3.25. Let X1, X2, X3, Y1, Y2, Y3 be vectors spaces over field F, and A1 P L (X1;X2),
A2 P L (X2;X3), B1 P L (Y1;Y2), B2 P L (Y2;Y3). Then

(A2 ‘ B2)(A1 ‘ B1) = (A2A1) ‘ (B2B1) .

Proof. Let x P X1 and y P Y1. Then by the definition of the tensor product of linear maps,

(A2 ‘ B2)(A1 ‘ B1)(x ‘ y) = (A2 ‘ B2)(A1x ‘ B1y) = (A2A1x ‘ B2B1y)
= (A2A1 ‘ B2B1)(x ‘ y) . ˝

Theorem 3.26. Let X1, X2, Y1, Y2 be finite dimensional vector spaces over field F, and
A P L (X1;X2), B P L (Y1;Y2). Suppose that relative to given basis of X1, X2, Y1, Y2, the
matrix representation of A and B are [A] and [B], respectively. Then relative to the basis
of X1 ‘ Y1 and X2 ‘ Y2 associated with given basis of X1, X2, Y1, Y2 (explained in Remark
3.23), the matrix representation of A ‘ B is[

[A] 0
0 [B]

]
.

3.2.2 Multi-linear maps

Multi-linearity is an extension of linearity of maps.

Definition 3.27. Let V1,V2,W be vector spaces over a common scalar field F. A map
L : V1 ‘ V2 Ñ W is said to be bilinear map provided that

L(cu + v,w) = cL(u,w) + L(v,w) @ u, v P V1,w P V2 and c P F , (3.2a)
L(u, cv + w) = cL(u, v) + L(u,w) @ u P V1, v,w P V2 and c P F . (3.2b)

The collection of all maps L : X ‘ Y Ñ Z satisfying (3.2) is denoted by L (V1,V2;W).

We can extend the bilinearity to multi-linearity easily through the following

Definition 3.28. Let V1, ¨ ¨ ¨ ,Vn,W be vector spaces over a common scalar field F. A
map L : V1 ‘ ¨ ¨ ¨ ‘ Vn Ñ W is said to be multi-linear, denoted by L P L (V1, ¨ ¨ ¨ ,Vn;W),
provided that

L(u1, ¨ ¨ ¨ ,uj´1, cvj + wj,uj+1, ¨ ¨ ¨ ,un)

= cL(u1, ¨ ¨ ¨ ,uj´1, vj,uj+1, ¨ ¨ ¨ ,un) + L(u1, ¨ ¨ ¨ ,uj,wj´1,uj+1, ¨ ¨ ¨ ,un)

for all 1 ď j ď n and c P F, and uℓ P Vℓ for all ℓ ‰ j, vj,wj P Vj.

51

Proposition 3.29. Let V1, ¨ ¨ ¨ ,Vn,W be vector spaces over a common scalar field F. Then
L (V1, ¨ ¨ ¨ ,Vn;W) is a vector space over F.

Proof. Let f, g P L (V1, ¨ ¨ ¨ ,Vn), and α P F. Then if 1 ď j ď n, c P F, and uℓ P Vℓ for all
ℓ ‰ j, vj,wj P Vj, we have

(αf + g)(u1, ¨ ¨ ¨ ,uj´1, cvj + wj,uj+1, ¨ ¨ ¨ ,un)

= αf(u1, ¨ ¨ ¨ ,uj´1, cvj + wj,uj+1, ¨ ¨ ¨ ,un) + g(u1, ¨ ¨ ¨ ,uj´1, cvj + wj,uj+1, ¨ ¨ ¨ ,un)

= α
[
cf(u1, ¨ ¨ ¨ ,uj´1, vj,uj+1, ¨ ¨ ¨ ,un) + f(u1, ¨ ¨ ¨ ,uj´1,wj,uj+1, ¨ ¨ ¨ ,un)

]
+ cg(u1, ¨ ¨ ¨ ,uj´1, vj,uj+1, ¨ ¨ ¨ ,un) + g(u1, ¨ ¨ ¨ ,uj´1,wj,uj+1, ¨ ¨ ¨ ,un)

= c(αf + g)(u1, ¨ ¨ ¨ ,uj´1, vj,uj+1, ¨ ¨ ¨ ,un) + (αf + g)(u1, ¨ ¨ ¨ ,uj´1,wj,uj+1, ¨ ¨ ¨ ,un) .

Therefore, αf + g P L (V1, ¨ ¨ ¨ ,Vn;W). ˝

3.3 Inner Product Spaces and Hilbert Spaces
Definition 3.30. An inner product space

(
V, x¨, ¨y

)
is a vector space V over a scalar

field F (where F = R or C) associated with a function x¨, ¨y : V ˆ V Ñ F such that

(1) xx,xy ě 0, @ x P V.

(2) xx,xy = 0 if and only if x = 0.

(3) xx,y + zy = xx,yy + xx, zy for all x,y, z P V.

(4) xx, λyy = λxx,yy for all λ P F and x,y P V.

(5) xx,yy = xy,xy for all x,y P V, where c denotes the complex conjugate of c.

A function x¨, ¨y satisfying (1)-(5) is called an inner product on V.

Proposition 3.31. Let x¨, ¨y be an inner product on a vector space V over a scalar field F.
Then

1. xu, λv + µwy = λxu, vy + µxu,wy for all u, v,w P V and λ, µ P F.

2. xλv + µw,uy = sλxv,uy + sµxw,uy for all u, v,w P V and λ, µ P F.

3. x0,wy = xw, 0y = 0 for all w P V.

52

Theorem 3.32. The inner product x¨, ¨y on a vector space V over scalar field F satisfies the
Cauchy-Schwarz inequality

ˇ

ˇxx,yy
ˇ

ˇ ď
a

xx,xy
a

xy,yy @ x,y P V . (3.3)

Moreover, for non-zero vectors x,y, the equality holds if and only if there exists γ P F such
that x = γy.

Proof. Let x,y P V. Define α = xx,yy. W.L.O.G. we can assume that α ‰ 0 (for otherwise
(3.3) holds trivially). Then there exists β P F such that α ¨ β = |α| (so |β| = 1). For any
λ P R,

0 ď xλβx + y, λβx + yy = λ2|β|2xx,xy2 + xλβx,yy + xy, λβxy + xy,yy2

= λ2xx,xy2 + λβxx,yy + λxβx,yy + xy,yy2

= λ2xx,xy2 + 2λ
ˇ

ˇxx,yy
ˇ

ˇ+ xy,yy2 . (3.4)

Since the right-hand side in the inequality above is always non-negative for all real λ, we
must have

ˇ

ˇxx,yy
ˇ

ˇ

2
´ xx,xy ¨ xy,yy ď 0

which implies (3.3).
Finally, suppose that x,y ‰ 0 and

ˇ

ˇxx,yy
ˇ

ˇ =
a

xx,xy
a

xy,yy. Then with λ P F given

by λ = ´

c

xy,yy

xx,xy
, (3.4) shows that

0 ď xλβx + y, λβxy = λ2xx,xy + 2λ
a

xx,xy
a

xy,yy + xy,yy

=
(
λ
a

xx,xy +
a

xy,yy
)2

= 0 ;

thus λβx + y = 0. ˝

Definition 3.33. A normed vector space (or simply normed space) (V, }¨}) is a vector
space V over a scalar field F, where F = R or C, associated with a function } ¨ } : V Ñ R
such that

(a) }x} ě 0 for all x P V.

(b) }x} = 0 if and only if x = 0.

(c) }λ ¨ x} = |λ| ¨ }x} for all λ P F and x P V.

53

(d) }x + y} ď }x} + }y} for all x,y P V.

A function } ¨ } satisfying (a)-(d) is called a norm on V.

Theorem 3.34. The inner product x¨, ¨y on a vector space V (over scalar field F) induces a
norm } ¨ } given by }x} =

a

xx,xy.

Proof. It should be clear that (a)-(c) in Definition 3.33 are satisfied. To show that } ¨ }

satisfies the triangle inequality, by (3.3) we find that(
}x} + }y}

)2
´ }x + y}2 = }x}2 + 2}x}}y} + }y}2 ´ xx + y,x + yy

= 2
(
}x}}y} ´ Rexx,yy

)
ě 2
(
}x}}y} ´

ˇ

ˇxx,yy
ˇ

ˇ

)
ě 0 ;

thus the triangle inequality is also valid. ˝

Having introduced the induced norm of inner product spaces, it is easy to see the follow-
ing two propositions and the proof of the propositions is left to the readers.

Proposition 3.35 (Parallelogram Law). Let (V, x¨, ¨y) be an inner product space, and } ¨ }

be the norm induced by the inner product. Then

}x ´ y}2 + }x + y}2 = 2
(
}x}2 + }y}2

)
@ x,y P V .

Proposition 3.36 (Polarization Identity). Let (V, x¨, ¨y) be an inner product space over F,
and } ¨ } be the norm induced by the inner product.

1. If F = R, then xx,yy =
1

4

[
}x + y}2 ´ }x ´ y}2

]
for all x,y P V.

2. If F = C, then xx,yy =
1

4

[
}x+y}2 ´}x ´y}2 ´ i}x+ iy}2+ i}x ´ iy}2

]
for all x,y P V.

We remark here that the polarization identity provides a way to reconstruct the inner
product once you only have the induced norm. The polarization identity provides a way to
verify if the norm of a normed space is induced by some inner product.

Definition 3.37. A Banach space is a complete normed vector space, and a Hilbert
space is a complete inner product space (that is, a Banach space whose norm is induced by
the inner product).

Remark 3.38. In the definition above, the completeness of a normed vector space is defined
as follows.

54

1. A sequence txnu8
n=1 is called a Cauchy sequence in a normed vector space (V, } ¨ }) if

(@ ε ą 0)(DN ą 0)(n,m ě N ñ }xn ´ xm} ă ε) .

2. A normed space (V, }¨}) is complete if every Cauchy sequence in V converges; that is, if
txnu8

n=1 is a Cauchy sequence in V, then there exists x P V such that lim
nÑ8

}xn´x} = 0.

Theorem 3.39. Let (H, x¨, ¨y) be a Hilbert space, and E be a closed convex subset of H. If
x R E, there exists a unique x0 P E such that

}x ´ x0} = dist(x, E) = inf
␣

}x ´ y}
ˇ

ˇy P E
(

.

Proof. By the definition of the infimum, there exists a sequence txnu8
n=1 Ď E such that

dist(x, E)2 ď }x ´ xn}2 ă dist(x, E)2 +
1

n
.

By the parallelogram law (Proposition 3.35),

}b ´ c}2 + 4
›

›a ´
b + c
2

›

›

2
= 2}a ´ b}2 + 2}a ´ c}2 @ a, b, c P H . (3.5)

Let a = x, b = xn and c = xm in (3.5). The convexity of E implies that xn + xm
2

P E; thus
›

›x ´
xn + xm

2

›

› ě dist(x,E). Therefore, for all n,m P N,

}xn ´ xm}2 ď 2
(
}x ´ xn}2 + }x ´ xm}2) ´ 4dist(x, E)2 ă

2

n
+

2

m
.

The inequality above shows that txnu8
n=1 is a Cauchy sequence in E. Since H is complete,

txnu8
n=1 converges to some point x0 P H, and the closedness of E implies that x0 P E.

Moreover,
}x ´ x0} = lim

nÑ8
}x ´ xn} = dist(x,E) .

For the uniqueness of such a closest point, suppose that y1,y2 P E are distinct and satisfy

}x ´ y1} = }x ´ y2} = dist(x, E) .

Then (3.5) implies that
›

›x ´
y1 + y2

2

›

›

2
=

1

4

[
2}x ´ y1}

2 + 2}x ´ y2}2 ´ }y1 ´ y2}2
]

ă dist(x, E)2 .

By the convexity of E, we have y1 + y2

2
P E; thus the above ineqaulity implies that y1,y2

cannot be the closest point of E to point x, a contradiction. ˝

55

Definition 3.40. Let (H, x¨, ¨y) be a Hilbert space, and W be a subspace of H. The orthog-
onal complement of W , denoted by WK, is the set

WK =
␣

x P H
ˇ

ˇ xx,yy = 0 for all y P W
(

.

Proposition 3.41. Let (H, x¨, ¨y) be a Hilbert space, and W be a subspace of H. Then EK

is closed in H.

Proof. The valid of the proposition follows from that

EK =
č

yPE

␣

x P H
ˇ

ˇ xx,yy = 0
(

and the fact that the set
␣

x P H
ˇ

ˇ xx,yy = 0
(

is closed for each y P H. ˝

Lemma 3.42. Let (H, x¨, ¨y) be a Hilbert space, and W be a subspace of H. Then

(WK)K = ĎW .

Proof. First we note that if x P W , then xx,yy = 0 for all y P WK. This implies that
x P (WK)K. Therefore, W Ď (WK)K. By Proposition 3.41, we must have ĎW Ď (WK)K.

Suppose that ĎW Ĺ (WK)K. Then there exists x P (WK)K X ĎW A. Since ĎW is a closed
subspace of H, ĎW must be convex; thus Theorem 3.39 implies that there exists a unique
x0 P ĎW such that

}x ´ x0} = dist(x,ĎW) .

Note that x ´ x0 P (WK)K. On the other hand, x ´ x0 P ĎWK Ď WK since x0 is the closed
point to x in ĎW . Therefore,

x ´ x0 P (WK)K X WK

which implies that x ´ x0 = 0, a contradiction to that x R ĎW . ˝

Corollary 3.43. Let (H, x¨, ¨y) be a Hilbert space, and W be a closed subspace of H. If
W ‰ H, then WK ‰ H.

‚ Orthonormal basis

Definition 3.44. Let (V, x¨, ¨y) be a finite dimensional inner product space. A basis B =

tv1, ¨ ¨ ¨ , vnu of V is said to be orthonormal if xvi, vjy = δij for all 1 ď i, j ď n, where δij is
the Kronecker delta.

56

Let (V, x¨, ¨yV) and (W, x¨, ¨yW) be two finite dimensional inner product spaces over C,
B = tv1, ¨ ¨ ¨ , vnu and rB = tw1, ¨ ¨ ¨ ,wmu be orthonormal basis of V and W, respectively,
and L P L (V;W). If A = [L]B, rB = [aij]mˆn be the matrix representation of L relative to B
and rB, then by the fact that

Lv =
m
ÿ

i=1

(n
ÿ

j=1

aijvj

)
wi

we find that

xw, LvyW =
A

m
ÿ

k=1

wkwk,
m
ÿ

i=1

(n
ÿ

j=1

aijvj

)
wi

E

W
=

n
ÿ

j=1

m
ÿ

i,k=1

aijvjĎwkxwk,wiyW =
n
ÿ

i=1

m
ÿ

j=1

aijvj swi

=
@

[w]
rB, A[v]B

D

Cm
=
@

[w]
rB, [L] rB,B[v]B

D

Cm
=
@

[w]
rB, [Lv]

rB
D

Cm
.

The identity above converts the computation of the inner product of w and Lv in W in terms
of the inner product of [w]

rB and [Lv]
rB(= [L]

rB,B[v]B) in Cm using the matrix representation
of L and matrix multiplications.

In general, if L1, L2 P L (V) and B is an orthonormal basis of V, then

xL1u, L2vyV =
@

[L1]B[u]B, [L2]B[v]B
D

Cn
@ u, v P V (3.6)

since
xL1u, L2vyV =

@

[L1u]B, [L2]B[v]ByCn =
@

[L1]B[u]B, [L2]B[v]ByCn .

3.4 Dual Spaces and Adjoint Operators
Definition 3.45. Let V and W be vector spaces over a common scalar field F equipped
with norms } ¨ }V and } ¨ }W, respectively. A linear map L : V Ñ W is said to be bounded if
the number

}L}B(V,W) ” sup
}x}V=1

}Lx}W ă 8 .

The collection of all bounded linear maps from V to W is denoted by B(V,W). When
V = W, we write B(V) instead of B(V,V). When the underlying spaces V,W are clear to
us, sometimes we simply use }L} to denote the norm }L}B(V,W).

Definition 3.46 (Dual Spaces). Let (X, } ¨ }X) be a Banach space over scalar field F.
The (continuous) dual space of X, denoted by X˚, is the collection of all bounded linear
functionals on X; that is,

X˚ =
!

L P L (X,F)
ˇ

ˇ

ˇ
sup

}x}X=1

ˇ

ˇL(x)
ˇ

ˇ ă 8

)

.

57

Theorem 3.47. If
(
H, x¨, ¨y

)
is a finite dimensional Hilbert space over field F, then H˚ is

also finite dimensional and dim(H) = dim(H˚).

Proof. Let te1, e2, ¨ ¨ ¨ , enu be an orthonormal basis of H (one can always find an orthonormal
basis through the Gram-Schmidt process). For each 1 ď k ď n, define φk : H Ñ F by

φk(x) = xek,xy .

The Cauchy-Schwarz inequality (3.3) then implies that

ˇ

ˇφk(x)
ˇ

ˇ ď }ek} ¨ }x} = }x} @ x P H ;

thus φk P H˚ for each 1 ď k ď n. Moreover, if α1, ¨ ¨ ¨ , αn are numbers in F and α1φ1 +

α2φ2 + ¨ ¨ ¨ + αnφn = 0 or to be more precise,

α1φ1(x) + α2φ2(x) + ¨ ¨ ¨ + αnφn(x) = 0 @ x P H ,

then for each 1 ď j ď n, the fact that φk(ej) = δjk (the Kronecker delta) implies that

0 = α1φ1(ej) + α2φ2(ej) + ¨ ¨ ¨ + αnφn(ej) =
n
ÿ

k=1

αkδjk = αk .

Therefore, tφ1, φ2, ¨ ¨ ¨ , φnu is a linear independent set.
Finally, by the fact that x =

n
ř

k=1

xek,xy ek for all x P H, we find that for f P H˚,

f(x) = f
(n
ÿ

k=1

xek,xyek
)
=

n
ÿ

k=1

f(ek)φk(x) @ x P H .

This implies that tφ1, φ2, ¨ ¨ ¨ , φnu is a basis of H˚; thus dim(H˚) = n. ˝

Theorem 3.48 (Riesz Representation). Let (H, x¨, ¨y) be a Hilbert space. Then every L P H˚

corresponds to a unique y P H such that L(x) = xy,xy for all x P H. In other words, there
exists a bijection φ : H˚ Ñ H such that

L(x) = xφ(L),xy @ x P H .

Moreover, }φ(L)} = }L}B(H,F) for all L P H˚.

58

Proof. W.L.O.G., we assume that L is not the zero map (for otherwise we can choose y = 0).
Let } ¨ } denote the norm induced by the inner product; that is, }v} =

a

xv, vy for all v P H.
Let N be the null space of L; that is, N = L´1(t0u). Then N is closed, so Corollary 3.43

implies that NK, the orthogonal complement of N , has a non-zero element z with }z} = 1.
Such z verifies the identity that

L
(
L(x)z ´ L(z)x

)
= L(x)L(z) ´ L(z)L(x) = 0 @ x P H .

In other words, the vector L(x)z ´ L(z)x P N for all x P H. Therefore, for each x P H,

0 = xz, L(x)z ´ L(z)xy = L(x)}z}2 ´ L(z)xz,xy = L(x) ´ L(z)xz,xy

so that letting y = ĘL(z)z, we have

L(x) = xy,xy @ x P H .

Suppose that y1,y2 P H satisfy L(x) = xy1,xy = xy2,xy for all x P H. Then

xy1 ´ y2,xy = 0 @ x P H .

In particular, letting x = y1 ´ y2 in the identity above we find that }y1 ´ y2} = 0; thus
the property of norms shows that y1 = y2. Therefore, each L P H˚ corresponds to a unique
y P H satisfying L(x) = xy,xy for all x P H.

Finally, using the identity that }y} = sup
}x}=1

ˇ

ˇxy,xy
ˇ

ˇ, we find that

}φ(L)} = sup
}x}=1

ˇ

ˇxφ(L),xy
ˇ

ˇ = sup
}x}=1

ˇ

ˇL(x)
ˇ

ˇ = }L}B(H,F) . ˝

Remark 3.49. Let (H, x¨, ¨y) be a Hilbert space, and φ be the map given in Theorem 3.48.
Define

xL1, L2y
H˚ =

@

φ(L1), φ(L2)
D

@L1, L2 P H˚ .

Then
(
H˚, x¨, ¨y

H˚

)
is a Hilbert space, and }¨}B(H,F) is the norm induced by the inner product

given above. The operator norm } ¨ }B(H,F) sometimes is denoted by } ¨ }H˚ .

Let (V, x¨, ¨yV) and (W, x¨, ¨yW) be Hilbert spaces over a common scalar field F, where
F = R or C, and A P B(V,W). Note that the boundedness of A implies that

}Av}W ď }A}B(V,W)}v}V ă 8 @ v P V .

59

For a given w P W, define L : V Ñ F by

L(v) = xw, AvyW .

Then L P V 1 (the algebraic dual space of W) and the Cauchy-Schwarz inequality (3.3)
implies that

ˇ

ˇL(v)
ˇ

ˇ ď }w}W}Av}W ď }w}W}A}B(V,W)}v}V

so that
sup

}v}V=1

ˇ

ˇL(v)
ˇ

ˇ ď }A}B(V,W)}w}W ă 8 .

Therefore, L P V˚ (the continuous dual space of W). By the Riesz representation theorem
(Theorem 3.48), there exists a unique vector u P V such that

L(v) = xu, vyV @ v P V .

The map w ÞÑ u is denoted by A˚ (so A˚ : W Ñ V), and A˚ is called the adjoint operator
of A. We note that A˚ satisfies that

xw, AvyW = xA˚(w), vyV @ v P V ,w P W

so that for all v P V and w1,w2 in W,
@

A˚(λw1 + µw2), v
D

V
= xλw1 + µw2, AvyW = sλxw1, AvyW + sµxw2, AvyW

= sλ
@

A˚(w1), v
D

V
+ sµ

@

A˚(w2), v
D

V
=
@

λA˚(w1) + µA˚(w2), v
D

V
.

Therefore,
A˚(λw1 + µw2) = λA˚(w1) + µA˚(w2) @ w1,w2 P H ;

thus A˚ P L (W,V). Moreover,

}A˚}B(W,V) = sup
}w}W=1

sup
}v}V=1

ˇ

ˇxA˚w, vyV

ˇ

ˇ = sup
}w}W=1

sup
}v}V=1

ˇ

ˇxw, AvyW

ˇ

ˇ

= sup
}v}V=1

sup
}w}W=1

ˇ

ˇxw, AvyW

ˇ

ˇ = }A}B(V,W) ;

thus A˚ is indeed bounded.

Definition 3.50. Let (V, x¨, ¨yV) and (W, x¨, ¨yW) be Hilbert spaces over a common scalar
field F, where F = R or C, and A P B(V,W). The adjoint operator of A, denoted by A˚, is
the unique element in B(W,V) satisfying that

xw, AvyW = xA˚w, vyV @ v P V ,w P W .

60

Remark 3.51. The adjoint operator can be defined for general linear operator (which may
be unbounded) as follows. Let (X, }¨}X) and (Y, }¨}Y) be normed spaces, and A : D(A) Ñ Y ,
where D(A) is a dense subset of X called the domain of A. The adjoint operator of A,
denoted by A˚, is an operator from a subset of Y ˚ to X˚ satisfying

xA˚y˚,xy = xy˚, Axy @ x P D(A),y˚ P D(A˚) ,

where x¨, ¨y denotes the duality pairing (a fancy way to express linear functionals in functional
analysis), and D(A˚), the domain of A˚, is the set

D(A˚) =
␣

y˚ P Y ˚
ˇ

ˇ DC ą 0 Q
ˇ

ˇxy˚, Axy
ˇ

ˇ ď C}x}X for all x P D(A)
(

.

Remark 3.52. Let (V, x¨, ¨yV) and (W, x¨, ¨yW) be Hilbert spaces over a common scalar field
F, where F = R or C, and A P B(V,W). By the property of inner product,

xAv,wyW = xw, AvyW = xA˚w, vyV = xv, A˚wyV @ v P V,w P W .

Therefore, the adjoint operator A˚ of A satisfies

xw, AvyW = xA˚w, vyV and xAv,wyW = xv, A˚wyV @ w, v P H . (3.7)

Proposition 3.53. Let (V, x¨, ¨yV) and (W, x¨, ¨yW) be Hilbert spaces over a common scalar
field F, where F = R or C, and A P B(V,W). Then (A˚)˚ = A.

Proof. Let v P V be given. Then if w P W, using (3.7) we find that

xAv,wyW = xv, A˚wyV =
@

(A˚)˚v,w
D

W
.

Therefore, Av = (A˚)˚v for all v P H; thus A = (A˚)˚. ˝

‚ Matrix representation of adjoint operators

Let (V, x¨, ¨yV) and (W, x¨, ¨yW) be two finite dimensional inner product spaces over C, B =

tv1, ¨ ¨ ¨ , vnu and rB = tw1, ¨ ¨ ¨ ,wmu be orthonormal basis of V and W, respectively, and
L P L (V;W). Using (3.6), we find that the matrix representation of L and L˚ satisfy

the (i, j)-entry of [L˚]B, rB

=
@

[vi]B, [L˚]B, rB[wj] rB
D

Cn
= xvi, L˚wjyV = xLvi,wjyW = xwj, LviyW

= the complex conjugate of the (j, i)-entry of [L]
rB,B.

This observation motivates the following

61

Definition 3.54 (Conjugate transpose of matrices). Let A = [aij]mˆn be an mˆn complex
matrix. The conjugate transpose of A, denoted by AH, A˚ or A: (the last one is often used
in quantum mechanics), is an n ˆ m matrix [bij]nˆm given by bij = aji. In other words,

a11 a12 ¨ ¨ ¨ a1n
a21 a22 ¨ ¨ ¨ a2n
... ...
am1 am2 ¨ ¨ ¨ amn


:

=


a11 a21 ¨ ¨ ¨ am1

a12 a22 ¨ ¨ ¨ am2
... ...
a1n a2n ¨ ¨ ¨ amn

 .

Remark 3.55. For real matrices, the conjugate transpose is just the transpose.

Theorem 3.56. Let (V, x¨, ¨yV) and (W, x¨, ¨yW) be finite dimensional inner product spaces
over C, B and rB be orthonormal basis of V and W, respectively. If L P L (V;W), then
[L˚]B, rB = [L]:

rB,B
.

Definition 3.57. Let A = [aij] be a square matrix.

1. A is said to be Hermitian if A = A:.

2. A is said to be skew Hermitian if A: = ´A.

3. A is said to be normal if AA: = A:A.

4. A is said to be unitary if A´1 = A: (explained in Section 3.5).

3.5 Unitary Operators and Unitary Matrices
The concept of unitary operators is a generalization of orthogonal matrices that have the
property that O´1 = OT.

3.5.1 Unitary operators

Definition 3.58. Let
(
H, x¨, ¨y

)
be a Hilbert space, and U P B(H).

1. U is said to be self-adjoint if U˚ = U .

2. U is said to be unitary if UU˚ = U˚U = Id, where Id denotes the identity map on
H.

62

The collection of self-adjoint operators on H is denoted by Bsa(H), and the collection of
unitary operators on H is denoted by U(H).

Remark 3.59. Let
(
H, x¨, ¨y

)
be a Hilbert space over field F, and U P B(H).

1. If F = R, then U satisfying UU˚ = U˚U = Id is often called orthogonal instead of
unitary. Therefore, when the term “unitary” is used, we often assume that F = C.

2. If U is unitary, then U˚ is also unitary.

Theorem 3.60. Let
(
H, x¨, ¨y

)
be a Hilbert space over field C, and U P B(H). The following

three statements are equivalent.

1. U is unitary.

2. U is surjective and }Ux} = }x} for all x P H.

3. U is surjective and xUx, Uyy = xx,yy for all x,y P H.

Proof. “1 ñ 2”: Let z P H be given. Then y = U˚z P H satisfies Uy = z. This implies
that U is surjective. Moreover, if x P H be given, then

}x}2 = xx,xy = xx, U˚Uxy = xUx, Uxy = }Ux}2 ;

thus }Ux} = }x} for all x P H.

“2 ñ 3”: Let x,y P H. Then

}U(x + y)}2 = xU(x + y), U(x + y)y = }Ux}2 + xUx, Uyy + xUy, Uxy + }Uy}2

= }Ux}2 + 2Re(xUx, Uyy) + }Uy}2 ,

}x + y}2 = }x}2 + xx,yy + xy,xy + }y}2 = }x}2 + 2Re(xx,yy) + }y}2 ,

and

}U(x + iy)}2 = xU(x + iy), U(x + iy)y = }Ux}2 + ixUx, Uyy ´ ixUy, Uxy + }Uy}2

= }Ux}2 ´ 2Im(xUx, Uyy) + }Uy}2 ,

}x + iy}2 = }x}2 + ixx,yy ´ ixy,xy + }y}2 = }x}2 ´ 2Im(xx,yy) + }y}2 .

Since }Ux} = }x} for all x P H, we have

Re(xUx, Uyy) = Re(xx,yy) and Im(xUx, Uyy) = Im(xx,yy) .

Therefore, xUx, Uyy = xx,yy for all x,y P H.

63

“3 ñ 1”: Let x P H be given. Then

xU˚Ux,yy = xUx, Uyy = xx,yy @ y P H ;

thus U˚Ux = x. This implies that U˚U = Id on H.

On the other hand, since U is surjective, for each y P H there exists x P H such that
Ux = y. Using U˚U = Id, this x must be U˚y; thus UU˚y = y for all y P H. This
shows that UU˚ = Id on H; thus U is unitary. ˝

Corollary 3.61. Let
(
H, x¨, ¨y

)
be a Hilbert space over field C. If U P U(H), then }U} = 1.

Definition 3.62. Let (X, } ¨ }) be a Banach space, and T P B(X). The spectrum of T ,
denoted by σ(T), is the collection of all λ P C for which the operator T´λId is not invertible.
In other words,

σ(T) =
␣

λ P C
ˇ

ˇ (T ´ λId) is not bijective
(

.

A number λ P σ(T) is called an eigenvalue of T if T ´ λId is not one-to-one. The collection
of all eigenvalues of T is called the point spectrum of T and is denoted by σp(T).

Theorem 3.63. Let
(
H, x¨, ¨y

)
be a Hilbert space, U P U(H), and λ be an eigenvalue of U .

Then |λ| = 1.

Proof. Let λ be an eigenvalue of U . Then there exists a non-zero vector x P H such that
Ux = λx. Therefore,

}Ux} = |λ|}x} ,

and the theorem is concluded by Theorem 3.60 and the fact that x ‰ 0. ˝

3.5.2 Unitary matrices

Definition 3.64. A unitary matrix A is the matrix representation of some unitary map
U : H Ñ H, where H is a finite dimensional inner product space over C, relative to an
orthonormal basis of H.

By the definition of unitary maps, Theorem 3.19 and 3.56 provide an alternative defini-
tion of unitary matrices that we state as follows.

Definition 3.65 (Alternative Definition of Unitary Matrices). A square matrix A is said
to be unitary if AA: = A:A = I. The collection of all n ˆ n unitary matrices is denoted by
U(n).

64

Corollary 3.66. If A P U(n), then A´1 = A:.

Corollary 3.67. If A P U(n), then
ˇ

ˇ det(A)
ˇ

ˇ = 1.

Definition 3.68. The special unitary group of degree n, denoted by SU(n), is the collection
of nˆn unitary matrices with determinant 1. An element in SU(n) is called a special unitary
matrix.

Definition 3.69 (Walsh-Hadamard Matrix). For m P NYt0u, the Walsh-Hadamard matrix
Hm is a 2m ˆ 2m matrix defined recursively by

1. H0 = 1; 2. Hm =
1

?
2

[
Hm´1 Hm´1

Hm´1 ´Hm´1

]
for all m P N.

We note that Hm is symmetric and orthogonal/unitary for all m P N (which can be
proved by induction).

Remark 3.70. The original definition of the Hadamard matrix (of order 2m), denoted by
Hm, is a 2m ˆ 2m matrix defined recursively by

1. H0 = 1; 2. Hm =

[
Hm´1 Hm´1

Hm´1 ´Hm´1

]
for all m P N.

However, in quantum computing we usually only consider unitary matrices, so the factor
1

?
2

is to normalized the original Hadamard matrices so that the norm of each colum (and

also each row) all become 1. Therefore, the Hadamard matrices given in Definition 3.69 is
sometimes called the normalized Hadamard matrices.

Remark 3.71. Let the (k, ℓ)-entry of Hm be denoted by hkℓ; that is, Hm = [hkℓ]1ďk,ℓď2m .
Then

hkℓ = 2´m
2 (´1)(k´1) ‚ (ℓ´1) ,

where the bitwise dot product ‚ of two numbers k and ℓ is given by

k ‚ ℓ =
m
ÿ

j=1

kjℓj = k1ℓ1 + k2ℓ2 + ¨ ¨ ¨ + kmℓm (3.8)

if k = (k1k2 ¨ ¨ ¨ km)2 and ℓ = (ℓ1ℓ2 ¨ ¨ ¨ ℓm)2.
In matlab®, the bitwise dot product of x and y can be computed by

x ‚ y = de2bi(x, n) ˚ de2bi(y, n)1

if both x and y can be expressed as n bits binary numbers.

65

Exercise 3.72. For matrices A = [akℓ] and B = [bkℓ] of the same size m ˆ n, define the
Hadamard product of A and B, denoted by A d B, as an m ˆ n matrix whose (k, ℓ)-entry
is give by akℓbkℓ; that is,

C = A d B , C = [ckℓ] , ckℓ = akℓbkℓ . (3.9)

In matlab®, the Hadamard product of A and B can be computed by A d B = A .˚B. In
the following, we will always use .̊ to denote the Hadamard product.

Let Mn =
?
2
nHn be the unnormalized Hadamard matrix whose (k, ℓ)-entry is given by

(´1)(k´1)‚ (ℓ´1), and rj be the (j +1)-th row of Mn. Define φ : t0, 1un Ñ tr0, r1, ¨ ¨ ¨ , r2n´1u

by
φ(j1, j2, ¨ ¨ ¨ , jn) = rj if j = (j1j2 ¨ ¨ ¨ jn)2 .

Show that φ : (t0, 1un,‘) Ñ
(
tr0, r1, ¨ ¨ ¨ , r2n´1u, .˚

)
is a group isomorphism, where ‘ is

the element-wise addition in Z2; that is,

(x1, x2, ¨ ¨ ¨ , xn) ‘ (y1, y2, ¨ ¨ ¨ , yn) = (x1 ‘ y1, x2 ‘ y2, ¨ ¨ ¨ , xn ‘ yn) .

In other words, show that φ : t0, 1un Ñ tr0, r1, ¨ ¨ ¨ , r2n´1u defined above is a bijection and

φ
(
(k1, ¨ ¨ ¨ , kn) ‘ (ℓ1, ¨ ¨ ¨ , ℓn)

)
= rk .̊ rℓ @ k = (k1k2 ¨ ¨ ¨ kn)2 and ℓ = (ℓ1ℓ2 ¨ ¨ ¨ ℓn)2 .

3.6 Quantum Mechanics
One should treat this section as an independent section.

Definition 3.73. A linear map A : H Ñ H is called an operator on the Hilbert space H.
The set of all operators on H is denoted by L (H). A linear map T : L (H) Ñ L (H); that
is, an operator acting on operators, is called a super-operator. The operator A˚ : H Ñ H
that satisfies

xA˚ψ|ϕy = xψ|Aϕy @ |ψy, |ϕy P H

is called the adjoint operator of A. A is called self-adjoint if A˚ = A, and the collection of
all self-adjoint operators on H is denoted by Bsa(H).

Definition 3.74 (Spectrum). Let A be an operator on a Hilbert space H. A vector |ψy P

Hzt0u is called an eigenvector of A with eigenvalue λ P C if

A|ψy = λ|ψy.

66

The linear subspace that is spanned by all eigenvectors for a given eigenvalue λ of an operator
A is called the eigenspace of λ and denoted by Eig(A, λ). An eigenvalue λ is called non-
degenerate if its eigenspace is one-dimensional. Otherwise, λ is called degenerate. The set
␣

λ P C
ˇ

ˇ (A−λI)−1 does not exist
(

is called the spectrum of the operator A and is denoted
by σ(A).

Definition 3.75. Let H be a Hilbert space. An operator P P L (H) satisfying P2 = P
is called a projection or projector. If in addition P˚ = P, then P is called an orthogonal
projection.

Let Hsub be a subspace of H. If Psub is an orthogonal projection and satisfies Psub|ψy =

|ψy for all |ψy P Hsub we call Psub the projection onto this subspace.
Let A P L (H). The projector onto the eigenspace Eig(A, λ) of λ is denoted by Pλ (here

A is not presented in the expression since we usually only focus on one particular A).

Definition 3.76 (Observables and Pure States). An observable; that is, a physically mea-
surable quantity of a quantum system, is represented by a self-adjoint operator on a Hilbert
space H. If the preparation of a statistical ensemble is such that for any observable rep-
resented by its self-adjoint operator A the mean value of the observable can be calculated
with the help of a vector |ψy P H satisfying }|ψy}H = 1 as

xAyψ = xψ|Aψy , (3.10)

then the preparation is said to be described by a pure state represented by the vector
|ψy P H. One calls |ψy the state vector or simply the state, and xAyψ is called the (quantum
mechanical) expectation value of the observable A in the pure state |ψy.

The space H is said to be the Hilbert space of the quantum system.

Using the diagonal representation of any self-adjoint operator A in terms of its eigenbasis
te1, ¨ ¨ ¨ , enu, the expectation value of the observable represented by A becomes

xAyψ = xψ|Aψy =
@

ψ
ˇ

ˇ

ÿ

j

λjej
D

xej|ψy =
ÿ

j

λjxψ|ejyxej|ψy =
ÿ

j

λj
ˇ

ˇxψ|ejy
ˇ

ˇ

2
.

In measurements one always observes an element of the spectrum (see Definition 3.74) of
the associated operator. Since we restrict ourselves here exclusively to finite dimensional
systems, for our purposes we can thus identify the eigenvalues tλju of a self-adjoint operator
A as the possible measurement results of the associated observable. In the case of a purely

67

non-degenerate spectrum the positive numbers
ˇ

ˇxψ|ejy
ˇ

ˇ

2 are interpreted as the probabilities
with which the respective value λj is observed. This is formalized more generally in the
following postulate.

Postulate 3.77. In a quantum system with Hilbert space H the possible measurement val-
ues of an observable are given by the spectrum σ(A) of the operator A P Bsa(H) associated
with the observable. The probability Pψ(λ) that for a quantum system in the pure state
|ψy P H a measurement of the observable yields the eigenvalue λ of A is given with the help
of the projection Pλ onto the eigenspace Eig(A, λ) of λ as

Pψ(λ) =
›

›Pλ|ψy
›

›

2

H .

Let A be an observable (with spectrum σ(A) = tλ1, ¨ ¨ ¨ , λnu and corresponding eigen-
basis te1, ¨ ¨ ¨ , enu), |ψy P H be a state vector, and α P R. Then

xAyeiαψ = xeiαψ|Aeiαψy = e´iαeiαxψ|Aψy = xAyψ ;

that is, the expectation values of any observable A in the state eiα|ψy and in the state |ψy

are the same. Since
ˇ

ˇxeiαψ|ejy
ˇ

ˇ

2
=
ˇ

ˇe´iαxψ|ejy
ˇ

ˇ

2
=
ˇ

ˇxψ|ejy
ˇ

ˇ

2
,

the measurement probabilities in the two states are also the same. This means that physi-
cally the state eiα|ψy P H and the state |ψy P H are indistinguishable. In other words, they
describe the same state.

Definition 3.78. Let H be a Hilbert space. For every |ψy P H with }|ψy}H = 1 the set

Sψ ”
␣

eiα|ψy
ˇ

ˇα P R
(

is called a ray in H with |ψy as a representative.

Every element of a ray Sψ describes the same physical situation. The phase α P R in eiα

can be arbitrarily chosen. More precisely, pure states are thus described by a representative
|ψy of a ray Sψ in the Hilbert space. In the designation of a state one uses only the
symbol |ψy of a representative of the ray, keeping in mind that |ψy and eiα|ψy are physically
indistinguishable. We shall use this fact explicitly on several occasions.

Conversely, every unit vector in a Hilbert space H corresponds to a physical state, in
other words, describes the statistics of a quantum mechanical system. If |ϕy, |ψy P H are

68

states, then a|ϕy + b|ψy P H for a, b P C with }a|ϕy + b|ψy}H = 1 is a state as well. This
is the quantum mechanical superposition principle: any normalized linear combination of
states is again a state and thus (in principle) a physically realizable preparation.

Postulate 3.79. In a quantum system with Hilbert space H every change of a pure state
over time

|ψ0y : state at time t0 no measurement
ÝÑ |ψ(t)y : state at time t

that has not been caused by a measurement is described by the time evolution operator
U(t, t0) P U(H). The time-evolved state |ψ(t)y originating from |ψ0y is then given by

|ψ(t)y = U(t, t0)|ψ(t0)y . (3.11)

The time evolution operator U(t, t0) is the solution of the initial value problem

i
d

dt
U(t, t0) = H(t)U(t, t0) , (3.12a)

U(t0, t0) = I , (3.12b)

where H(t) is the self-adjoint Hamilton operator (a.k.a. Hamiltonian), which is said to
generate the time evolution of the quantum system.

The operator version of time evolution given in Postulate 3.79 is completely equivalent
to the well-known Schrödinger equation

i
d

dt
|ψ(t)y = H(t)|ψ(t)y (3.13)

which describes the time evolution of pure states as expressed by its effect on the state
vectors. This is because application of (3.12) to (3.11) results in the Schrödinger equation
(3.13), and, conversely, any solution of the Schrödinger equation for arbitrary initial states
|ψ(t0)y yields a solution for U(t, t0). The formulation of the time evolution making use
of the time evolution operator U(t, t0) given in Postulate 3.79 has the advantage over the
Schrödinger equation that it can be used for mixed states (which we will not talk about)
as well. The operator H(t) corresponds to the observable energy of the quantum system.
Hence, the expectation value xH(t)yψ of the Hamiltonian gives the expectation value for

the energy of the system in the state |ψy. If H is time-independent; that is, d

dt
H(t) = 0,

then the energy of the system is constant and is given by the eigenvalues tEj | j P Iu of

69

H. The fact that these eigenvalues are discrete for certain Hamiltonians is at the heart of
the designation “quantum”. It was Planck’s assumption that the energy of a black body
can only be integer multiples of a fixed quantum of energy, which helped him derive the
correct radiation formula. But the origins of this assumptions were not understood at
the time. Only quantum mechanics subsequently provided a theoretical and mathematical
theory delivering a proof for discrete energy levels.

The Hamilton operator H(t) not only corresponds to the energy observable of the system,
but also determines the time evolution of the system. The specific form of the operator H(t)

is determined by the internal and external interactions to which the quantum system is
exposed. Circuits in quantum computers are built up from elementary gates that act as
unitary operators V on the states. In order to implement such gates one then tries to create
Hamilton operators that generate a time evolution U(t, t0) implementing the desired gate;
that is, one attempts to find H(t) and t such that V = U(t, t0).

3.7 Tensor Product of Vector Spaces
Motivated by Section 2.3.1, in the following we investigate the general properties of tensor
product of vectors.
Caution: The definition of the tensor product given below is purely mathematics. You do
not need to understand fully in order to learn quantum computing; however, we encourage
you to go through this once for it will explain a lot of things that normal textbooks for
quantum computing will not talk about.

3.7.1 Tensor product

Let V be a vector space over a scalar field F. By Proposition 3.29, we find that V 1 is a
vector space over F as well. This enables us to consider (V 1) 1, the dual space of V 1. In the
example above, we have that [(Rn) 1] 1 = Rn. In general, (V 1) 1 = V is not true, but there is
an injection ι : V Ñ (V 1) 1 in the sense that

ι(v)(f) ” f(v) @ f P V 1 . (3.14)

The linear embedding ι : V Ñ (V 1) 1 is a natural vector space isomorphism provided, again,
dim(V) is finite, the proof being evident as the embedding is a linear and injective map
between spaces with equal finite dimension (Proposition 3.21).

70

The embedding (3.14) permits us to define a vector space

V1 b V2 b ¨ ¨ ¨ b Vn ,

called the tensor product of vector spaces V1,V2, ¨ ¨ ¨ ,Vn with a common scalar field F.
Before proceeding to the definition of the tensor product of vector spaces, we first look at
the tensor product of vectors.

Definition 3.80. Let V1, ¨ ¨ ¨ ,Vn be vector spaces over a common scalar field F, and vj P Vj

be given for 1 ď j ď n. The tensor product v1 b ¨ ¨ ¨ b vn is a function from V 1
1 ‘ ¨ ¨ ¨ ‘ V 1

n

to F defined by

(v1 b ¨ ¨ ¨ b vn)(f1,…, fn) =
n
ź

j=1

fj(vj) ” f1(v1) ¨ ¨ ¨ ¨ ¨ fn(vn) . (3.15)

The associativity and distributive law of the scalar field of F imply the following three
propositions.

Proposition 3.81. Let U,V,W be vector spaces over a common scalar field F, and u P U,
v P V and w P W. Then

u b v b w = (u b v) b w = u b (v b w) .

Proof. Let f P U 1, g P V 1 and h P W 1. Then

(u b v b w)(f, g, h) = f(u) ¨ g(v) ¨ h(w) =
[
f(u) ¨ g(v)

]
¨ h(w) = (u b v)(f, g) ¨ h(w)

=
[
(u b v) b w

](
(f, g), h

)
=
[
(u b v) b w

]
(f, g, h)

so that u b v b w = (u b v) b w. The identity u b v b w = u b (v b w) can be proved in
the similar fashion, and the proof is left to the reader. ˝

Proposition 3.82. Let V1, ¨ ¨ ¨ , Vn be vector spaces over a common scalar field F. For
1 ď j ď n, let vℓ P Vℓ for ℓ ‰ j, uj,wj P Vj, and c P F. Then

v1 b ¨ ¨ ¨ b vj´1 b (cuj + wj)b vj+1 b ¨ ¨ ¨ b vn
= c (v1 b ¨ ¨ ¨ b vj´1 b uj b vj+1 b ¨ ¨ ¨ b vn)+ (v1 b ¨ ¨ ¨ b vj´1 b wj b vj+1 b ¨ ¨ ¨ b vn) .

71

Proof. Let fℓ P V 1
ℓ for 1 ď ℓ ď n be given. Then(

v1 b ¨ ¨ ¨ b vj´1 b (cuj + wj)b vj+1 b ¨ ¨ ¨ b vn
)
(f1, ¨ ¨ ¨ , fn)

= f1(v1) ¨ ¨ ¨ fj´1(vj´1) ¨ fj(cuj + wj) ¨ fj+1(vj) ¨ ¨ ¨ fn(vn)
= cf1(v1) ¨ ¨ ¨ fj´1(vj´1) ¨ fj(uj) ¨ fj+1(vj) ¨ ¨ ¨ fn(vn)
+ f1(v1) ¨ ¨ ¨ fj´1(vj´1) ¨ fj(wj) ¨ fj+1(vj) ¨ ¨ ¨ fn(vn)

= c(v1 b ¨ ¨ ¨ b vj´1 b uj b vj+1 b ¨ ¨ ¨ b vn)(f1, ¨ ¨ ¨ , fn)

+ (v1 b ¨ ¨ ¨ b vj´1 b wj b vj+1 b ¨ ¨ ¨ b vn)(f1, ¨ ¨ ¨ , fn)

which establishes the proposition. ˝

Proposition 3.83. Let V1, ¨ ¨ ¨ ,Vn be vector spaces over a common scalar field F, and
vj P Vj be given for 1 ď j ď n. Then v1 b ¨ ¨ ¨ b vn P L (V 1

1, ¨ ¨ ¨ ,V 1
n;F).

Proof. Let 1 ď j ď n, fℓ P V 1
ℓ for ℓ ‰ j, gj, hj P V 1

j and c P F be given. Then

(v1 b ¨ ¨ ¨ b vn)(f1, ¨ ¨ ¨ , fj´1, cgj + hj, fj+1, ¨ ¨ ¨ , fn)

= f1(v1) ¨ ¨ ¨ ¨ ¨ fj´1(vj´1) ¨
[
cgj(vj) + hj(vj)

]
¨ fj+1(vj+1) ¨ ¨ ¨ ¨ ¨ fn(vn)

= c f1(v1) ¨ ¨ ¨ ¨ ¨ fj´1(vj´1) ¨ gj(vj) ¨ fj+1(vj+1) ¨ ¨ ¨ ¨ ¨ fn(vn)
+ f1(v1) ¨ ¨ ¨ ¨ ¨ fj´1(vj´1) ¨ hj(vj) ¨ fj+1(vj+1) ¨ ¨ ¨ ¨ ¨ fn(vn)

= c(v1 b ¨ ¨ ¨ b vn)(f1, ¨ ¨ ¨ , fj´1, gj, fj+1, ¨ ¨ ¨ , fn)

+ (v1 b ¨ ¨ ¨ b vn)(f1, ¨ ¨ ¨ , fj´1, hj, fj+1, ¨ ¨ ¨ , fn)

which shows that v1 b ¨ ¨ ¨ b vn satisfies the multi-linearity. ˝

The fact that L (V 1
1, ¨ ¨ ¨ ,V 1

n;F) is a vector space over F motivates the definition of the
tensor product of vector spaces.

Definition 3.84. Let V1, ¨ ¨ ¨ , Vn be vector spaces over a common scalar field F. The
tensor product space V1 b¨ ¨ ¨bVn is the subspace of L (V 1

1, ¨ ¨ ¨ ,V 1
n;F) spanned by all finite

linear combinations of tensor products v1 b ¨ ¨ ¨ b vn, where vj P Vj for 1 ď j ď n and
v1 b ¨ ¨ ¨ b vn P L (V 1

1, ¨ ¨ ¨ ,V 1
n;F) is given by (3.15).

The following proposition is a direct consequence of Proposition 3.81.

Proposition 3.85. Let U,V,W be vector spaces over a common scalar field F. Then

U b V b W = (U b V) b W = U b (V b W) .

72

Proposition 3.86. Let V1, ¨ ¨ ¨ ,Vn be finite-dimensional vector spaces over a common scalar
field F. Then V1 b ¨ ¨ ¨Vn is finite-dimensional and

dim
(
V1 b ¨ ¨ ¨ b Vn) =

n
ź

j=1

dim(Vj) = dim(V1) ¨ ¨ ¨ ¨ ¨ dim(Vn) .

Proof. By Proposition 3.85, it suffices to show the case n = 2.
Let te1, e2, ¨ ¨ ¨ , enu and tre1,re2, ¨ ¨ ¨ ,remu be basis of V1 and V2, respectively. For x P V1

and y P V2, write x =
n
ř

k=1

xkek and y =
m
ř

ℓ=1

yℓreℓ. Then Proposition 3.82 implies that

x b y =
(n
ÿ

k=1

xkek
)

b

(m
ÿ

ℓ=1

yℓreℓ
)
=

n
ÿ

k=1

m
ÿ

ℓ=1

xkyℓ(ek b reℓ) .

Since vectors in V1 b V2 can be expressed as a linear combination of vectors of the form
x b y, we find that every vectors in V1 b V2 can be expressed as a linear combination of
vectors from the set B ”

␣

ek b reℓ
ˇ

ˇ 1 ď k ď n, 1 ď ℓ ď m
(

. Since #B = nm, it suffices to
show that B is a linearly independent set.

Let
␣

ckℓu1ďkďn,1ďℓďm be a collection of scalars in F such that
n
ÿ

k=1

m
ÿ

ℓ=1

ckℓek b reℓ = 0 (the zero vector in V1 b V2).

Let fi P V 1
1 and gj P V 1

2 satisfy

fi(ek) = δik and gj(reℓ) = δjℓ ,

where δ¨¨ are the Kronecker delta. Then for each 1 ď i ď n and 1 ď j ď m,

0 =
(n
ÿ

k=1

m
ÿ

ℓ=1

ckℓek b reℓ
)
(fi, gj) =

n
ÿ

k=1

m
ÿ

ℓ=1

ckℓδikδjℓ = cij .

This implies that B is a linearly independent set; thus dim(V1 b V2) = #B = nm. ˝

Next we consider the (matrix/coordinate) representation of tensor product of vectors.
This amounts to choose an ordered basis in the tensor product space. We start with the
following

Example 3.87. Let U and V be vector spaces over a common scalar field F, and BU =

tu1,u2,u3u and BV = tv1, v2u be basis of U and V, respectively. For x P U and y P V, there
exist unique x1, x2, x3, y1, y2 P F such that

x = x1u1 + x2u2 + x3u3 and y = y1v1 + y2v2 ,

73

By the property of the tensor product of vectors,

x b y =
3
ÿ

i=1

2
ÿ

j=1

xiyj(ui b vj)

so that the coordinate (the collection of coefficients) of x b y relative to the ordered basis
B = tu1 b v1,u1 b v2,u2 b v1,u2 b v2,u3 b v1,u3 b v2

(

of U b V is given by

(x1y1, x1y2, x2y1, x2y2, x3y1, x3y2) .

Writing the coordinate in terms of a column vector, we have

[x b y]B =


x1y1
x1y2
x2y1
x2y2
x3y1
x3y2

 =


x1

[
y1
y2

]
x2

[
y1
y2

]
x3

[
y1
y2

]


”

x1x2
x3

b

[
y1

y2

]
= [x]BU b [y]BV .

The ordered basis B is called the induced basis of the ordered basis BU and BV.

Remark 3.88. For given basis of vector spaces, there are two induced basis, one for direct
sum of spaces and one for tensor product of spaces. We will abuse the use of the word
“induced” but keep in mind that it refers to one particular type.

The example above motivates the formal/computational definition of the tensor product
of vectors in Cm and Cn as follows. Let x = [x1, x2, ¨ ¨ ¨ , xm]

T P Cm and y = [y1, y2, ¨ ¨ ¨ , yn]
T P

Cn. The “tensor product” of x and y, denoted by [x b y], is a vector in Cmn given by

[x b y] =



x1y1
...

x1yn
...

xmy1
...

xmyn


=



x1

y1...
yn


...

xm

y1...
yn




”

x1...
xm

b

y1...
yn

 = [x] b [y].

In fact, [x b y] P Cmn is indeed the coordinate of x b y relative to the induced ordered basis
␣

e1 bre1, e1 bre2, ¨ ¨ ¨ , e1 bren, e2 bre1, e2 bre2, ¨ ¨ ¨ , e2 bren, ¨ ¨ ¨ , em bre1, em bre2, ¨ ¨ ¨ , em bren
(

of Cm b Cn.

74

Suppose that X,Y, Z,W are vector spaces over a scalar field F. Then L (X;Z) and
L (Y ;W) are also vector spaces so that L (X;Z) b L (Y ;W) is a well-defined concept (in
the sense of Definition 3.84). In the following, we talk about an alternative definition of
A b B if A b B is if A P L (X;Z) and B P L (Y ;W).

Definition 3.89. Let X,Y, Z,W be vector spaces over a common scalar field F, and A P

L (X;Z), B P L (Y ;W). The tensor product of A and B, denoted by AbB, is an element
in L (X b Y, Z b W) satisfying that

(A b B)(x b y) = (Ax) b (By) @ x P X and y P Y .

Remark 3.90. To avoid confusion, instead of treating A b B as the tensor product of A
and B one can also treat AbB as a “new operation” between linear maps A and B (but
with the same notation).

Proposition 3.91. Let A,B,C be linear maps on vector spaces X,Y, Z (over a common
scalar field F). Then

(A b B) b C = A b (B b C) .

‚ Matrix representation of tensor product of linear maps

Suppose that X,Y, Z,W are finite dimensional vector spaces over field F, and tx1, ¨ ¨ ¨ ,xnu,
ty1, ¨ ¨ ¨ ,yℓu, tz1, ¨ ¨ ¨ , zmu and tw1, ¨ ¨ ¨ ,wku are basis of X,Y, Z,W , respectively. Let
A P L (X;Z), B P L (Y ;W), and the matrix representations of A and B be [A] =

[aij]1ďiďm,1ďjďn and [B] = [bij]1ďiďk,1ďjďℓ, respectively, so that

A(c1x1 + ¨ ¨ ¨ + cnxn) =
m
ÿ

i=1

(n
ÿ

r=1

aircr

)
zi , B(d1y1 + ¨ ¨ ¨ + dℓyℓ) =

k
ÿ

j=1

(ℓ
ÿ

s=1

bjsds

)
wj .

Then

(A b B)
(
(c1x1 + ¨ ¨ ¨ + cnxn) b (d1y1 + ¨ ¨ ¨ + dℓyℓ)

)
”
[
A(c1x1 + ¨ ¨ ¨ + cnxn)

]
b
[
B(d1y1 + ¨ ¨ ¨ + dℓyℓ)

]
=
[m
ÿ

i=1

(n
ÿ

r=1

aircr

)
zi
]

b

[k
ÿ

j=1

(ℓ
ÿ

s=1

bjsds

)
wj

]
=

m
ÿ

i=1

k
ÿ

j=1

(n
ÿ

r=1

ℓ
ÿ

s=1

airbjscrds

)
zi b wj .

75

Since the induced ordered basis of X b Y and Z b W are given respectively by

BXbY =
␣

x1 b y1, ¨ ¨ ¨ ,x1 b yℓ,x2 b y1, ¨ ¨ ¨ ,x2 b yℓ, ¨ ¨ ¨ ,xn b y1, ¨ ¨ ¨ ,xn b yℓ
(

,

BZbW =
␣

z1 b w1, ¨ ¨ ¨ , z1 b wk, z2 b w1, ¨ ¨ ¨ , z2 b wk, ¨ ¨ ¨ , zm b w1, ¨ ¨ ¨ , zm b wk

(

,

the matrix representation of A b B satisfies

[A b B]



c1d1
...

c1dℓ
c2d1

...
c2dℓ

...
cnd1

...
cndℓ


nℓˆ1

=



řn
r=1

řℓ
s=1 a1rb1scrds...

řn
r=1

řℓ
s=1 a1rbkscrds

řn
r=1

řℓ
s=1 a2rb1scrds...

řn
r=1

řℓ
s=1 a2rbkscrds...

řn
r=1

řℓ
s=1 amrb1scrds...

řn
r=1

řℓ
s=1 amrbkscrds


mkˆ1

for all c1, ¨ ¨ ¨ , cn and d1, ¨ ¨ ¨ , dℓ in F.
Let c1 = dj = 1, where 1 ď j ď ℓ, and cr = ds = 0 for other r, s, we find that the j-th

column of [A b B] is given by

[A b B](:, j) =



a11b1j
...

a11bkj

a21b1j
...

a21bkj
...

am1b1j
...

am1bkj


=



a11

b1j...
bkj


a21

b1j...
bkj


...

am1

b1j...
bkj





=

a11...
am1

b

b1j...
bkj



so that the first ℓ columns of [A b B] are given by

[A b B](:, 1 : ℓ) =


a11[B]

a21[B]
...

am1[B]

 =

a11...
am1

b [B] .

76

Let c2 = dj = 1, where 1 ď j ď ℓ, and cr = ds = 0 for other r, s, we find that the (ℓ+ j)-th
column of [A b B] is given by

[A b B](:, ℓ+ j) =



a12b1j
...

a12bkj

a22b1j
...

a22bkj
...

am2b1j
...

am2bkj


=



a12

b1j...
bkj


a22

b1j...
bkj


...

am2

b1j...
bkj





=

a12...
am2

b

b1j...
bkj



so that the (ℓ+ 1)-th to 2ℓ-th columns of [A b B] are given by

[A b B](:, ℓ1 : 2ℓ) =


a12[B]

a22[B]
...

am2[B]

 =

a12...
am2

b [B] .

In general, we can find that the (p ´ 1)ℓ + j column of [A b B] by letting cp = dj = 1

and cr = ds = 0 for other r, s and obtain that the matrix representation of A b B is then
given by

[A b B] =


a11[B] a12[B] ¨ ¨ ¨ a1n[B]
a21[B] a22[B] ¨ ¨ ¨ a2n[B]

...
am1[B] am2[B] ¨ ¨ ¨ amn[B]

 ” [A] b [B] .

Definition 3.92. Let A P M(m,n) and B P M(k, ℓ) The tensor product of A and B,
denoted by A b B, is an (mk) ˆ (nℓ) matrix given by

A b B =


a11B a12B ¨ ¨ ¨ a1nB
a21B a22B ¨ ¨ ¨ a2nB

...
am1B am2B ¨ ¨ ¨ amnB

 .

Remark 3.93. In matlab®, the tensor product AbB of two matrices A and B is given by

A b B = kron(A,B) .

77

‚ Tensor product of Hilbert spaces

We note that the tensor product spaces defined above does not have an inner product
structure. Now let us talk about the Hilbertian tensor product of Hilbert spaces. Consider
a finite number of (complex) Hilbert spaces H1, ¨ ¨ ¨ ,Hn with respective Hermitian scalar
products x¨, ¨y1, ¨ ¨ ¨ , x¨, ¨yn. Relying upon the above definition, we can first define their
algebraic tensor product

H1 b ¨ ¨ ¨ b Hn .

This is not a Hilbert space yet. However it is possible (not so easy) to prove that H1b¨ ¨ ¨bHn

admits an Hermitian scalar product induced by the ones of each Hj. This scalar product
x¨, ¨y is the unique right-linear (property (3) and (4) in Definition 3.30) and left-antilinear
(property (3) and (5) in Definition 3.30) extension of

xu1 b ¨ ¨ ¨ b un, v1 b ¨ ¨ ¨ b vny ”

n
ź

j=1

xuj, vjyj if uj, vj P Hj for all 1 ď j ď n . (3.16)

The (anti)linear extension is necessary because ψ1 b ¨ ¨ ¨ bψn is not the generic element of
H1 b ¨ ¨ ¨ b Hn, the generic element is a finite linear combination of these elements!

It turns out that the unique (anti)liner extension of (3.16) defines an Hermitian scalar
product on H1 b ¨ ¨ ¨ bHn, in particular the extension is positively defined (property (1) and
(2) in Definition 3.30).

Definition 3.94. The Hilbertian tensor product of (complex) Hilbert spaces (H1, x¨, ¨y1),
¨ ¨ ¨ , (Hn, x¨, ¨yn) is the (complex) Hilbert space H1 b ¨ ¨ ¨ bHn given as the completion of the
algebraic tensor product H1 b ¨ ¨ ¨ b Hn with respect to the Hermitian scalar product x¨, ¨y

which uniquely (anti)linearly extends (3.16).

The completion V of a vector space V equipped with an Hermitian scalar product x¨, ¨y

is the complete (Hilbert) space of the equivalence classes of the Cauchy sequences in V
equipped with the unique continuous extension of x¨, ¨y. So it is uniquely defined (up to
Hilbert space isomorphisms) and V is dense in V. Nevertheless, the Hilbert spaces Hj in
quantum computing are C2 for all 1 ď j ď n, so the tensor product spaces H1 b ¨ ¨ ¨ b Hn

along with the norm induced by the inner product defined by (3.16) is again a Hilbert space.

78

Theorem 3.95. For each n P N,

n
â

ℓ=1

(
|0y + eiϕℓ |1y

)
” (|0y + eiϕ1 |1y) b (|0y + eiϕ2 |1y) b ¨ ¨ ¨ b (|0y + eiϕn |1y)

=
2n´1
ÿ

j=0

ei(j1ϕ1+j2ϕ2+¨¨¨+jnϕn)|jy , (3.17)

where |jy = |j1j2 ¨ ¨ ¨ jny for j P t0, 1un.

Proof. Since

|0y + eiϕℓ |1y =
1
ÿ

jℓ=0

eijℓϕℓ |jℓy ,

we find that

n
â

ℓ=1

(
|0y + eiϕℓ |1y

)
=

n
â

ℓ=1

1
ÿ

jℓ=0

eijℓϕℓ |jℓy =
(1
ÿ

j1=0

eij1ϕ1 |j1y

)
b ¨ ¨ ¨ b

(1
ÿ

jn=0

eijnϕn |jny

)
=

1
ÿ

j1=0

1
ÿ

j2=0

¨ ¨ ¨

1
ÿ

jn=0

ei(j1ϕ1+j2ϕ2+¨¨¨jnϕn)|j1y b |j2y b ¨ ¨ ¨ b |jny

=
1
ÿ

j1=0

1
ÿ

j2=0

¨ ¨ ¨

1
ÿ

jn=0

ei(j1ϕ1+j2ϕ2+¨¨¨jnϕn)|j1j2 ¨ ¨ ¨ jny

=
ÿ

(j1,j2,¨¨¨ ,jn)Pt0,1un

ei(j1ϕ1+j2ϕ2+¨¨¨jnϕn)|j1j2 ¨ ¨ ¨ jny

which concludes (3.17). ˝

Corollary 3.96. For each n P N and j = (j1j2 ¨ ¨ ¨ jn)2,

Hbn|jy ” Hbn|j1j2 ¨ ¨ ¨ jny =
1

?
2n

2n´1
ÿ

k=0

(´1)j‚k|ky , (3.18)

where we recall that with k = (k1k2 ¨ ¨ ¨ kn)2, j ‚ k ” j1k1 + ¨ ¨ ¨ jnkn.

Proof. Note that for jℓ P t0, 1u,

H|jℓy =
1

?
2

1
ÿ

kℓ=0

(´1)jℓkℓ |kℓy .

79

Therefore, using (3.17) for the case ϕ1 = k1, ¨ ¨ ¨ , ϕn = kn we find that

Hbn|j1j2 ¨ ¨ ¨ jny

= (H|j1y) b ¨ ¨ ¨ b (H|jny) =
(1

?
2

1
ÿ

k1=0

(´1)j1k1 |k1y
)

b ¨ ¨ ¨ b

(1
?
2

1
ÿ

kn=0

(´1)jnkn |kny

)
=

1
?
2n

1
ÿ

k1=0

1
ÿ

k2=0

¨ ¨ ¨

1
ÿ

kn=0

(´1)j1k1+j2k2+¨¨¨+jnkn |k1y b |k2y b ¨ ¨ ¨ b |kny

=
1

?
2n

ÿ

k=k1k2¨¨¨knPt0,1un

(´1)j1k1+j2k2+¨¨¨+jnkn |k1k2 ¨ ¨ ¨ kny =
1

?
2n

2n´1
ÿ

k=0

(´1)j‚k|ky

which concludes (3.18). ˝

Remark 3.97. Note that the qubit

1
?
2

(
|0y + eiϕ|1y

)
= Rϕ|+y = RϕH|0y ,

(3.17) implies that

n
â

ℓ=1

(RϕℓH)|0y =
1

?
2n

2n´1
ÿ

j=0

ei(j1ϕ1+j2ϕ2+¨¨¨+jnϕn)|jy .

3.7.2 Correspondence between tensor product and quantum cir-
cuits

The tensor product of quantum gates represents a unitary transformation when these quan-
tum gates are applied in parallel (at the same time), while the ordinary product of quantum
gates represents a unitary transformation when these quantum gates are applied sequen-
tially. Using the matrix representation of quantum gates, there is a way to understand the
overall effect of all quantum gates applied in a system. For example, the overall unitary
transformation given by the quantum circuit

H

Z(
which produces the entangled quantum state 1

?
2

(
|00y ´ |11y

)
when it applies on |00y, as

80

explained in Section 2.4
)

is (I2 b Z)CNOT(H b I2), so using the matrix representation

[H b I2] =
1

?
2

[
1 1
1 ´1

]
b I = 1

?
2

[
I2 I2
I2 ´I2

]
=

1
?
2


1 0 1 0
0 1 0 1
1 0 ´1 0
0 1 0 ´1


and

[I2 b Z] =
[
1 0
0 1

]
b Z =

[
Z 0
0 Z

]
=


1 0 0 0
0 ´1 0 0
0 0 1 0
0 0 0 ´1

 ,

as well as the matrix representation of CNOT we find that the matrix representation of the
overall unitary transformation given by the quantum circuit can be computed by


1 0 0 0
0 ´1 0 0
0 0 1 0
0 0 0 ´1



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1
?
2

0
1

?
2

0

0
1

?
2

0
1

?
2

1
?
2

0 ´
1

?
2

0

0
1

?
2

0 ´
1

?
2



=


1 0 0 0
0 ´1 0 0
0 0 1 0
0 0 0 ´1




1
?
2

0
1

?
2

0

0
1

?
2

0
1

?
2

0
1

?
2

0 ´
1

?
2

1
?
2

0 ´
1

?
2

0


=



1
?
2

0
1

?
2

0

0 ´
1

?
2

0 ´
1

?
2

0
1

?
2

0 ´
1

?
2

´
1

?
2

0
1

?
2

0


.

This matrix representation of the overall unitary transform immediately tells us how to
produce the EPR pair 1

?
2

(
|00y + |11y

)
: simply apply this circuit to the state |10y since

[|10y] =
[
0 0 1 0

]T and

1
?
2

0
1

?
2

0

0 ´
1

?
2

0 ´
1

?
2

0
1

?
2

0 ´
1

?
2

´
1

?
2

0
1

?
2

0



0
0
1
0

 =


1

?
2
0
0
1

?
2


which corresponds to the EPR pair.

81

3.7.3 More examples

In the following examples, for an n-qubit system we always use the ordered basis Bn ”
␣

|0y, |1y, |2y, ¨ ¨ ¨ , |2n ´ 1y
(

, where, by writting k in terms of binary number (k1k2 ¨ ¨ ¨ kn)2;
that is,

k = 2n´1k1 + 2n´2k1 + ¨ ¨ ¨ + 21kn´1 + 20kn ,

the k-th basis vector in Bn is |k ´ 1y.

Example 3.98 (Matrix representation of swap operation). In an n-qubit system, we use
SWAPi,j (here we assume i ă j since SWAPi,j ” SWAPj,i) to denote the swap operator
that swaps the position of the i-th and the j-th qubit; that is

SWAPi,j|x1y b ¨ ¨ ¨ b |xny

= |x1y b ¨ ¨ ¨ b |xi´1y b |xjy b |xi+1y b ¨ ¨ ¨ b |xj´1y b |xiy b |xj+1y b ¨ ¨ ¨ b|xny .

We note that SWAPi,j is perfectly defined operator as long as i ‰ j and i, j ď n. On the
other hand, the matrix representation for SWAPi,j is a 2n ˆ 2n matrix which essentially
depends on the number of qubits in a qubit system that SWAP gate acts on. Therefore,
to denote the matrix representation of SWAPi,j one should use something like [SWAPi,j]n

to indicate the number n of qubits in the system. In the following, for simplicity instead of[
SWAPi,j

]
n

we still use SWAPi,j to denote the matrix representation of SWAPi,j without
explicitly indicating (but knowing) the number n of qubits in the system under consideration.

We first consider the swap operator on a 2-qubit system, denoted by SWAP and defined
by

SWAP|xy b |yy = |yy b |xy .

Write |xy = α0|0y + α1|1y and |yy = β0|0y + β1|1y. Then

|xy b |yy = (α0|0y + α1|0y) b (β0|0y + β1|1y)

= α0β0|0y b |0y + α0β1|0y b |1y + α1β0|1y b |0y + α1β1|1y b |1y

= α0β0|0y + α0β1|1y + α1β0|2y + α1β1|3y ,

and

|yy b |xy = (β0|0y + β1|1y) b (α0|0y + α1|0y)

= α0β0|0y b |0y + α0β1|1y b |0y + α1β0|0y b |1y + α1β1|1y b |1y

= α0β0|0y + α1β0|1y + α0β1|2y + α1β1|3y

82

so that

SWAP


α0β0
α0β1
α1β0
α1β1

 =


α0β0
α1β0
α0β1
α1β1


for all (α0, α1), (β0, β1) on the Bloch sphere. Therefore, the matrix representation of SWAP
(relative to the ordered basis B2) is a 4 ˆ 4 matrix given by

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

The quantum circuit symbol for SWAP is

Similarly, on a 3-qubit system, there are three swap operators:

SWAP1,2|xy b |yy b |zy = |yy b |xy b |zy ,

SWAP2,3|xy b |yy b |zy = |xy b |zy b |yy ,

SWAP1,3|xy b |yy b |zy = |zy b |yy b |xy .

Note that
SWAP1,2 = SWAP b I2 and SWAP2,3 = I2 b SWAP

whose validity can be verifies by the quantum circuits:

|x1y

|x2y

|x3y

=
|x0y

|x1y

|x2y

|x1y

|x2y

|x3y

=

|x0y

|x1y

|x2y

By the result of tensor product of linear maps, the matrix representations of SWAP1,2 and
SWAP2,3 (relative to the ordered basis B3) are given by

SWAP1,2 = SWAP b I2 =


I2

I2
I2

I2

 =



1
1

1
1

1
1

1
1



83

and

SWAP2,3 = I2 b SWAP =

[
SWAP

SWAP

]
=



1
1

1
1

1
1

1
1


.

To compute the matrix representation of SWAP1,3 (on a 3-qubit system), we write
|xy = α0|0y + α1|1y, |yy = β0|0y + β1|1y, |zy = γ0|0y + γ1|1y and find that

SWAP1,3|xy b |yy b |zy = |zy b |yy b |xy

= α0β0γ0|0y + α1β0γ0|1y + α0β1γ0|2y + α1β1γ0|3y

+ α0β0γ1|4y + α1β0γ1|5y + α0β1γ1|6y + α1β1γ1|7y ;

thus

SWAP1,3



α0β0γ0
α0β0γ1
α0β1γ0
α0β1γ1
α1β0γ0
α1β0γ1
α1β1γ0
α1β1γ1


=



α0β0γ0
α1β0γ0
α0β1γ0
α1β1γ0
α0β0γ1
α1β0γ1
α0β1γ1
α1β1γ1


Therefore, the matrix representation of SWAP1,3 (relative to the ordered basis B3) is given
by

SWAP1,3 =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


.

We note that the matrix representation of SWAP1,3 can also be computed using the identity

SWAP1,3 = SWAP1,2 ¨ SWAP2,3 ¨ SWAP1,2 .

84

|x1y

|x2y

|x3y

=
|x1y

|x2y

|x3y

Example 3.99 (The controlled-not gate). In quantum computing, the controlled-not gate
is a 2-qubit gate defined by

|xy b |yy ÞÑ

#

|xy b |yy if |xy = |0y ,

|xy b (NOT|yy) if |xy = |1y ,

where NOT is the NOT gate defined by NOT|0y = |1y and NOT|1y = |0y. Write |xy =

α0|0y + α1|1y and |yy = β0|0y + β1|1y. Then the controlled-not gate maps
(
α0|0y + α1|1y

)
b(

β0|0y + β1|1y
)

to

α0|0y b |yy + α1|1y b (|1y ‘ |yy) = α0|0y b
(
β0|0y + β1|1y

)
+ α1|1y b

(
β0|1y + β1|0y

)
= α0β0|0y b |0y + α0β1|0y b |1y + α1β0|1y b |1y + α1β1|1y b |0y

so that the controlled-not gate, in terms of qubit state vector representation, maps


α0β0
α0β1
α1β0
α1β1


to


α0β0
α0β1
α1β1
α1β0

 for all (α0, β0), (α1, β1) on the Bloch sphere; thus the matrix representation

(relative to the ordered basis B2) is a 4 ˆ 4 matrix given by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

The quantum circuit symbol for CNOT is

control qubit

target qubit

Example 3.100 (The TOFFOLI gate). In quantum computing, the Toffoli gate, also called
the controlled-controlled-not gate, is a 3-qubit gate defined by

|xy b |yy b |zy ÞÑ

#

|xy b |yy b (NOT|zy) if |xy = |yy = |1y ,

|xy b |yy b |zy otherwise .

85

The matrix representation of the Toffoli gate (relative to the ordered basis B3) is a 8 ˆ 8

matrix given by

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

The quantum circuit symbol for CCNOT is

1st control qubit

2nd control qubit

target qubit

We always use ‚ to denote a control qubit that activates the operation on the target
qubit when the value is 1. Another kind of control qubit that activates the operation on
the target qubit when the value is 0 is denoted by the symbol ˝. For example, the 2-qubit
quantum gate

|xy b |yy ÞÑ

#

|xy b |yy if |xy = |1y ,

|xy b (X|yy) if |xy = |0y ,

is symbolized by
control qubit

target qubit

and the 3-qubit quantum gate

|xy b |yy b |zy ÞÑ

#

|xy b |yy b (X|zy) if |xy = |0y and |yy = |1y ,

|xy b |yy b |zy otherwise ,

will be symbolized by
1st control qubit

2nd control qubit

target qubit

Example 3.101 (Entanglement). Consider the quantum circuit

86

H

The matrix representation of the quantum circuit above is

CNOT(H b I) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1
?
2

0
1

?
2

0

0
1

?
2

0
1

?
2

1
?
2

0 ´
1

?
2

0

0
1

?
2

0 ´
1

?
2

 =



1
?
2

0
1

?
2

0

0
1

?
2

0
1

?
2

0
1

?
2

0 ´
1

?
2

1
?
2

0 ´
1

?
2

0


so that the quantum circuit

|0y H

|0y

produces an entangled quantum register 1
?
2

|00y +
1

?
2

|11y since



1
?
2

0
1

?
2

0

0
1

?
2

0
1

?
2

0
1

?
2

0 ´
1

?
2

1
?
2

0 ´
1

?
2

0



1
0
0
0

 =


1

?
2
0
0
1

?
2

 .

Example 3.102 (CNOT gate on n-qubit system). In an n-qubit system, we use CNOTi,j

to denote the contorlled-not gate whose control qubit is the i-th qubit while the target qubit
is the j-th qubit; that is,

CNOTi,j

(
|x1y b |x2y b ¨ ¨ ¨ b |xny

)
=

"

|x1y b ¨ ¨ ¨ b |xj´1y b (X|xjy)b |xj+1y b ¨ ¨ ¨ b |xny if |xiy = |1y,

|x1y b ¨ ¨ ¨ b |xny if |xiy = |0y,

where X is the NOT gate. We note that CNOTi,j is perfectly defined operator as long as
i ‰ j and i, j ď n. On the other hand, the matrix representation for CNOTi,j is a 2n ˆ 2n

matrix which essentially depends on the number of qubits in a qubit system that CNOT
gate acts on. In the following, when talking about the matrix representation of CNOTi,j,

87

we always assume that it is a 2k ˆ 2k matrix, where k = maxti, ju, and still use CNOTi,j,
instead of

[
CNOTi,j

]
, to denote the matrix representation of CNOTi,j.

We first consider CNOTi,n on an n-qubit system, where 1 ď i ă n. The keys for
computing the matrix representation of CNOTi,n are the two identities

CNOTi,n = I2 b CNOTi´1,n´1 = blkdiag(CNOTi´1,n´1,CNOTi´1,n´1) , (3.19a)
CNOT1,n = SWAP1,2 ¨ CNOT2,n ¨ SWAP1,2 . (3.19b)

The validity of (3.19) can be easily verifies by the corresponding quantum circuits:

|x1y

...
|xiy

...
|xny

=

|x0y

...
|xi´1y

...
|xn´1y

|x1y

|x2y

...
|xny

=

|x1y

|x2y

...
|xny

Figure 3.1: The quantum circuits to explain (3.19)

We first show that for all n P N,

CNOT1,n+1 = blkdiag
(

I2, I2, ¨ ¨ ¨ , I2
l jh n

2n´1 copies of I2

, X,X, ¨ ¨ ¨ ,X
l jh n

2n´1 copies of X

)
)
. (3.20)

To see (3.20), we note that CNOT1,2 = CNOT = diag(I2,X), and (3.19) shows that

CNOT1,3 = SWAP1,2 ¨ CNOT2,3 ¨ SWAP1,2

= (SWAP b I2) ¨ (I2 b CNOT) ¨ (SWAP b I2)

=


I2

I2
I2

I2




I2
X

I2
X




I2
I2

I2
I2

 =


I2

I2
X

X


= diag(I2, I2,X,X) .

Suppose that (3.20) holds for the case n = m. If n = m+ 1, by writing

X2m = blkdiag(X,X, ¨ ¨ ¨ ,X
l jh n

2m´1 copies of X

)

88

so that CNOT1,m+1 = blkdiag
(
I2m ,X2m

)
, using (3.19) we have

CNOT1,n+1 = SWAP1,2 ¨ CNOT2,n+1 ¨ SWAP1,2

= (SWAP b I2m) ¨ (I2 b CNOT1,m+1) ¨ (SWAP b I2m)

=


I2m

I2m
I2m

I2m




I2m
X2m

I2m
X2m




I2m
I2m

I2m
I2m



=


I2m

I2m
X2m

X2m

 = blkdiag(I2m , I2m ,X2m ,X2m) = blkdiag(I2m+1 ,X2m+1) .

Therefore, (3.20) is established by induction.
Using (3.19) we find that

CNOT1,3 = blkdiag(I2, I2,X,X) and CNOT2,3 = blkdiag(I2,X, I2,X) .

The identities above and (3.20) further imply that

CNOT1,4 = blkdiag(I2, I2, I2, I2,X,X,X,X) , (3.21a)
CNOT2,4 = blkdiag(CNOT1,3,CNOT1,3) = blkdiag(I2, I2,X,X, I2, I2,X,X) , (3.21b)
CNOT3,4 = blkdiag(CNOT2,3,CNOT2,3) = blkdiag(I2,X, I2,X, I2,X, I2,X) , (3.21c)

and

CNOT1,5 = blkdiag(I2, I2, I2, I2, I2, I2, I2, I2,X,X,X,X,X,X,X,X) ,

CNOT2,5 = blkdiag(CNOT1,4,CNOT1,4)

= blkdiag(I2, I2, I2, I2,X,X,X,X, I2, I2, I2, I2,X,X,X,X) ,

CNOT3,5 = blkdiag(CNOT2,4,CNOT2,4)

= blkdiag(I2, I2,X,X, I2, I2,X,X, I2, I2,X,X, I2, I2,X,X) ,

CNOT4,5 = blkdiag(CNOT3,4,CNOT3,4)

= blkdiag(I2,X, I2,X, I2,X, I2,X, I2,X, I2,X, I2,X, I2,X) .

In general,
CNOTi,n+1 = blkdiag

(
IXn´i´1, ¨ ¨ ¨ , IXn´i´1
l jh n

2i´1 copies of IXn´i´1

)
, ˚

89

where IXk = blkdiag
(

I2, ¨ ¨ ¨ , I2
l jh n

2k copies of I2

, X, ¨ ¨ ¨ ,X
l jh n

2k copies of X

)
.

Remark 3.103. For n ě 1, let
[
σi1, σi2, ¨ ¨ ¨ , σi2n

]
be the (2n´i+1)-th row of the unnormal-

ized Walsh-Hadamard matrix Hn given in Definition 3.69, then

CNOTi,n+1 = blkdiag
(
X(1´σi1)/2,X(1´σi2)/2, ¨ ¨ ¨ ,X(1´σi2n)/2

)
,

where X0 ” I2, or with f denotes the matrix-valued function f(1) = I2 and f(´1) = X,

CNOTi,n+1 = blkdiag
(
f(σi1), f(σi2), ¨ ¨ ¨ , f(σi2n)

)
.

For example, note that

H3 =



1 1 1 1 1 1 1 1
1 ´1 1 ´1 1 ´1 1 ´1
1 1 ´1 ´1 1 1 ´1 ´1
1 ´1 ´1 1 1 ´1 ´1 1
1 1 1 1 ´1 ´1 ´1 ´1
1 ´1 1 ´1 ´1 1 ´1 1
1 1 ´1 ´1 ´1 ´1 1 1
1 ´1 ´1 1 ´1 1 1 ´1


.

Since the (23´1 + 1)-th, (23´2 + 1)-th and (23´3 + 1)-th row of H3 are given by[
1 1 1 1 ´1 ´1 ´1 ´1

]
,[

1 1 ´1 ´1 1 1 ´1 ´1
]
,[

1 ´1 1 ´1 1 ´1 1 ´1
]
,

respectively, we find that

CNOT1,4 = blkdiag(I2, I2, I2, I2,X,X,X,X) ,

CNOT2,4 = blkdiag(I2, I2,X,X, I2, I2,X,X) ,

CNOT3,4 = blkdiag(I2,X, I2,X, I2,X, I2,X) .

The row vector
[
σi1, σi2, ¨ ¨ ¨ , σi2n

]
defined above is called the symbol of CNOTi,n+1 in this

lecture note.

90

Exercise 3.104. For given j, n P N with j ă n, write a matlab® function which generates
CNOTj,n given above. You may also want to try CNOTi,j;n which is the matrix represen-
tation of an n-qubit system with i-th bit as the controlled bit and j-th bit as the target bit
(where 1 ď i, j ď n but i is not necessary smaller than j).

Definition 3.105. A quantum gate is called a multi-controlled gate if there exists some
qubits, called control qubits, such that each value of the control qubits corresponds to a
quantum gate acting on the rest of qubits, the target qubits.

Suppose a multi-controlled gate is an n-qubit gate with m control bits and (n´m) target
bits, where 1 ď k ă n. Rather than just applying a gate when all control bits are zero or
one, in a multi-controlled gate the applied operation to the target qubits can be different
for each of the 2m possible classical values of the control qubits.

In the following examples, we consider the matrix representation of some special multi-
controlled gates.

Example 3.106. Consider a multi-controlled gate given by

A(|xy b |yy) =

"

|xy b U |yy if |xy = |0y ,

|xy b V |yy if |xy = |1y .

Here the first qubit |xy is the control qubit, while the second qubit |yy is the target qubit.
Write |xy = α0|0y + α1|1y and |yy = β0|0y + β1|1y. Then with “probability” |α0|2 A maps
|xy b |yy to |0y b (U |yy) and with “probability” |α1|

2 A maps |xy b |yy to |1y b (V |yy); thus

A(|xy b |yy) = α0|0y b (U |yy) + α1|1y b (V |yy)

= α0|0y b
[
(u11β0 + u12β1)|0y + (u21β0 + u22β1)|1y

]
+ α1|1y b

[
(v11β0 + v12β1)|0y + (v21β0 + v22β1)|1y

]
= α0(u11β0 + u12β1)|0y b |0y + α0(u21β0 + u22β1)|0y b |1y

+ α1(v11β0 + v12β1)|1y b |0y + α1(v21β0 + v22β1)|1y b |1y ;

thus the qubit state vector representation of A(|xy b |yy) is given by

[
A(|xy b |yy)

]
=


α0(u11β0 + u12β1)
α0(u21β0 + u22β1)
α1(v11β0 + v12β1)
α1(v21α1β0 + v22β1)

 =


u11 u12
u21 u22

v11 v12
v21 v22



α0β0
α0β1
α1β0
α1β1

 .

91

In other words, the matrix representation (relative to the ordered basis) is

[A] =


u11 u12
u21 u22

v11 v12
v21 v22

 = blkdiag(U, V) .

Since U and V are unitary, we find that A is a 2-qubit gate. This kind of qubit gate is called
a quantum multiplexer.

Next we consider a multi-controlled 3-qubit gate in which the control qubits are the first
2 qubits. We first consider the map A defined by

A(|xy b |yy b |zy) =

$

’

’

’

&

’

’

’

%

|xy b |yy b (U00|zy) if |xy b |yy = |0y b |0y ,

|xy b |yy b (U01|zy) if |xy b |yy = |0y b |1y ,

|xy b |yy b (U10|zy) if |xy b |yy = |1y b |0y ,

|xy b |yy b (U11|zy) if |xy b |yy = |1y b |1y ,

where |xy, |yy, |zy are all 1-qubit, and U00, U01, U10, U11 are 2ˆ 2 unitary matrices. Similar
to the computation above, if |xy = α0|0y+α1|1y, |yy = β0|0y+β1|1y, and |zy = γ0|0y+γ1|1y,
we have

A(|xy b |yy b |zy) =
1
ÿ

i,j=0

αiβj|iy b |jy b (Uij|zy)

where the qubit state vector representation of the right-hand side is


α0β0U00|zy

α0β1U01|zy

α1β0U10|zy

α1β1U11|zy

 =


U00

U01

U10

U11





α0β0

[
γ0
γ1

]
α0β1

[
γ0
γ1

]
α1β0

[
γ0
γ1

]
α1β1

[
γ0
γ1

]


.

Therefore, the matrix representation of A is
U00

U01

U10

U11

 .

92

In general, we can consider the multi-controlled (n+ 1)-qubit gate L given by

L(|x1y b ¨ ¨ ¨ b |xny b |xn+1y)

=

$

’

&

’

%

|x1y b ¨ ¨ ¨ b |xny b (U0¨¨¨0|xn+1y) if |x1y b ¨ ¨ ¨ b |xny = |0y b ¨ ¨ ¨ b |0y ,
... ...

|x1y b ¨ ¨ ¨ b |xny b (U1¨¨¨1|xn+1y) if |x1y b ¨ ¨ ¨ b |xny = |1y b ¨ ¨ ¨ b |1y .

where Uj1¨¨¨jn ’s are 2 ˆ 2 unitary matrices for all j1, ¨ ¨ ¨ , jn P t0, 1un, and the control qubits
are the first n qubits. By identifying (j1 ¨ ¨ ¨ jn)2 with j or more precisely,

j = (j1 ¨ ¨ ¨ jn)2 = 2n´1j1 + ¨ ¨ ¨ + 2jn´1 + jn ,

we write Uj1¨¨¨jn as Uj and |j1y b ¨ ¨ ¨ b |jny as |jy so that L can be simply written as

L(|xy b |xn+1y) = |jy b (Uj|xn+1y) if |xy = |jy .

Suppose that Uj =
[
u
(j)
11 u

(j)
12

u
(j)
21 u

(j)
22

]
, |xy = α0|0y+¨ ¨ ¨+α2n´1|2

n ´ 1y and |xn+1y = β0|0y+β1|1y.

Then for 0 ď j ď 2n ´ 1,

Uj|xn+1y = (u
(j)
11 β0 + u

(j)
12 β1)|0y + (u

(j)
21 β0 + u

(j)
22 β1)|1y

which implies that

[L] :



α0

[
β0
β1

]
α1

[
β0
β1

]
...

α2n´1

[
β0
β1

]


ÞÑ



α0

(
u
(0)
11 β0 + u

(0)
12 β1

)
α0

(
u
(0)
21 β0 + u

(0)
22 β1

)
α1

(
u
(1)
11 β0 + u

(1)
12 β1

)
α1

(
u
(1)
21 β0 + u

(1)
22 β1

)
...

αj
(
u
(j)
11 β0 + u

(j)
12 β1

)
αj
(
u
(j)
21 β0 + u

(j)
22 β1

)
...

α2n´1

(
u
(2n´1)
11 β0 + u

(2n´1)
12 β1

)
α2n´1

(
u
(2n´1)
21 β0 + u

(2n´1)
22 β1

)



.

93

Therefore,

L(|xy b |xn+1y) =



u
(0)
11 u

(0)
12

u
(0)
21 u

(0)
22

u
(1)
11 u

(1)
12

u
(1)
21 u

(1)
22

. . .
. . .

u
(2n´1)
11 u

(2n´1)
12

u
(2n´1)
21 u

(2n´1)
22





α0

[
β0
β1

]
α1

[
β0
β1

]
...
...

α2n´1

[
β0
β1

]


.

The 2n+1 ˆ 2n+1 matrix is the matrix representation of L.

Example 3.107. Similar to the previous example, in this example we consider a multi-
controlled gate given by

L(|xy b |yy) =

"

|xy b U |yy if |xy = |0y ,

|xy b V |yy if |xy = |1y .

where the control qubit |xy is a 1-qubit state, the target qubit |yy is an n-qubit state, and
U , V are both n-qubit gates (so that [U] and [V] are 2n ˆ 2n unitary matrix).

Write |xy = α0|0y + α1|1y, |yy = β0|0y + ¨ ¨ ¨ + β2n´1|2
n ´ 1y, and |ψy = |xy b |yy. Then

L|ψy = α0|0y b
[
U
(
β0|0y + ¨ ¨ ¨ + β2n´1|2n ´ 1y

)]
+ α1|1y b

[
V
(
β0|0y + ¨ ¨ ¨ + β2n´1|2

n ´ 1y
)]

Since the matrix representation of L satisfies

[L] :


α0

 β0
...

β2n´1


α1

 β0
...

β2n´1




ÞÑ


α0[U]

 β0
...

β2n´1


α1[V]

 β0
...

β2n´1




.

to find the matrix representation of L, we let α0 = βℓ´1 = 1 for some fixed ℓ while αi = βj = 0

if i ‰ 0 and j ‰ ℓ to obtain that the ℓ-th column of [L] is given by

[L](:, ℓ) =

[
1
0

]
b U(:, ℓ) =

[
U (:, ℓ)

0
2m

]

94

and let α1 = βℓ´1 = 1 for some fixed ℓ while αi = βj = 0 if i ‰ 1 and j ‰ ℓ to obtain that

[L](:, 2n + ℓ) =

[
0
1

]
b V (:, ℓ) =

[
0
2m

V (:, ℓ)

]
,

where 0
2m

denotes the zero vectors in C2m . This shows that [L] = blkdiag(U, V).
In general, if a multi-controlled (n+ 1)-qubit gate L is defined by

L(|xy b |yy) =

$

’

’

’

’

&

’

’

’

’

%

|xy b U0|yy if |xy = |0y ,

|xy b U1|yy if |xy = |1y ,
... ...

|xy b U2k´1|yy if |xy = |2k ´ 1y ;

that is, the controlled qubit |xy is an m-qubit state and L(|xyb|yy) = |xybUj|yy if |xy = |jy.
Then the matrix representation of L is given by

[L] = blkdiag(U0, U1, ¨ ¨ ¨ , U2m´1) .

since by letting |xy = |k ´ 1y and |yy = |ℓ ´ 1y for some 1 ď k ď 2m and 1 ď ℓ ď 2n´m+1,
we have

[L](:, (k ´ 1)2m + ℓ) = ek b U(:, ℓ) ,

where te1, e2, ¨ ¨ ¨ , e2mu is the standard basis of C2m .

Example 3.108. In Example 3.106, we consider the multi-controlled (n+ 1)-qubit gate in
which the control qubits are the first n qubits. How about if the control qubits are the last
n qubits? Consider multi-controlled (n+ 1)-qubit gate L given by

L(|x0y b |x1y b ¨ ¨ ¨ b |xny) =

$

’

&

’

%

(U0¨¨¨0|x0y)b |x1y b ¨ ¨ ¨ b |xny if |x1y b ¨ ¨ ¨ b |xny = |0y b ¨ ¨ ¨ b |0y ,
...

...
(U1¨¨¨1|x0y)b |x1y b ¨ ¨ ¨ b |xny if |x1y b ¨ ¨ ¨ b |xny = |1y b ¨ ¨ ¨ b |1y .

where Uj1¨¨¨jn ’s are 2 ˆ 2 unitary matrices for all j1, ¨ ¨ ¨ , jn P t0, 1un, and the control qubits
are the last n qubits. By identifying (j1 ¨ ¨ ¨ jn)2 with j or more precisely,

j = (j1 ¨ ¨ ¨ jn)2 = 2n´1j1 + ¨ ¨ ¨ + 2jn´1 + jn ,

we write Uj1¨¨¨jn as Uj and |j1y b ¨ ¨ ¨ b |jny as |jy so that L can be simply written as

L(|x0y b |xy) = (Uj|x0y) b |xy if |xy = |jy .

95

Suppose that Uj =
[
u
(j)
11 u

(j)
12

u
(j)
21 u

(j)
22

]
, |x0y = α0|0y+α1|1y and |xy = β0|0y+ ¨ ¨ ¨+β2n´1|2n ´ 1y.

Then and for 0 ď j ď 2n ´ 1,

Uj|x0y = (u
(j)
11 α0 + u

(j)
12 α1)|0y + (u

(j)
21 α0 + u

(j)
22 α1)|1y

which implies that

[L] :


α0

 β0
...

β2n´1


α1

 β0
...

β2n´1




ÞÑ



(
u
(0)
11 α0 + u

(0)
12 α1

)
β0

...(
u
(j)
11 α0 + u

(j)
12 α1

)
βj

...(
u
(2n´1)
11 α0 + u

(2n´1)
12 α1

)
β2n´1(

u
(0)
21 α0 + u

(0)
22 α1

)
β0

...(
u
(j)
21 α0 + u

(j)
22 α1

)
βj

...(
u
(2n´1)
21 α0 + u

(2n´1)
22 α1

)
β2n´1



.

Therefore,

[
L(|x0y b |xy)

]
=



u
(0)
11 u

(0)
12

u
(1)
11 u

(1)
12

.
u
(2n´1)
11 u

(2n´1)
12

u
(0)
21 u

(0)
22

u
(1)
21 u

(1)
22

.
u
(2n´1)
21 u

(2n´1)
22





α0


β0
β1
...

β2n´1



α1


β0
β1
...

β2n´1




.

The 2n+1 ˆ 2n+1 matrix is the matrix representation of L. In particular, if Uj is a rotation

matrix of the form Uj = R(2θj+1) =

[
cos θj+1 ´ sin θj+1

sin θj+1 cos θj+1

]
(here we label U from 0 to

96

2n ´ 1 but label θ from 1 to 2n), then

[L] =



cos θ1 ´ sin θ1
cos θ2 ´ sin θ2

.
cos θ2n ´ sin θ2n

sin θ1 cos θ1
sin θ2 cos θ2

.
sin θ2n cos θ2n


which takes the block structure

[
C ´S
S C

]
. A matrix of this form will play important role

in Section 3.8.3.

Example 3.109. In this example we consider a special multi-controlled (n+ 1)-qubit gate
Aj defined by

Aj(|x0y b ¨ ¨ ¨ b |xny) = |x0y b ¨ ¨ ¨ b |xj´1y b (Rz(θk)|xjy) b |xj+1y b ¨ ¨ ¨ b |xny

if (x0 ¨ ¨ ¨xj´1xj+1 ¨ ¨ ¨xn)2 = k, where Rz is the rotation about z-axis given by

Rz(θ) =

[
e´iθ/2 0

0 eiθ/2

]
.

This is a multi-controlled gate with n control qubits and the target qubit is the |xjy qubit,
and is sometimes denoted by F n

j+1(Rz) (since the target qubit |xjy is the (j + 1)-th qubit
counting from the highest/left-most qubit).

Example 3.106 establishes the case j = 0, while Example 3.108 established the case
j = n. Now we consider the case 1 ď j ă n. We first consider the case j = 1. In this case,
we note that An´1 = SWAPn,n+1 ¨ An ¨ SWAPn,n+1, where the operator SWAPn,n+1 swaps
the position of the n-th and the (n+1)-th qubit, and An is the multi-controlled (n+1)-qubit
gate introduced in Example 3.106 with Uk = Rz(θk). Example 3.106 shows that the matrix
representation of An is given by

[An] = blkdiag
(
Rz(θ1),Rz(θ2), ¨ ¨ ¨ ,Rz(θ2n)

)
= diag

(
e´iθ1/2, eiθ1/2, e´iθ2/2, eiθ2/2, ¨ ¨ ¨ , e´iθ2n/2, eiθ2n/2

)
;

97

thus by the fact that

SWAPn,n+1 = I2n´1 b SWAP =


SWAP

SWAP
. . .

SWAP


and

SWAP ¨ diag(a, b, c, d) ¨ SWAP

=

1 1
1

1


a b

c
d


1 1

1
1

 =

a c
b
d

 = diag(a, c, b, d) ,

we conclude that

[An´1] = SWAPn,n+1 ¨ [An] ¨ SWAPn,n+1

=



e´iθ1/2

e´iθ2/2

eiθ1/2

eiθ2/2

e´iθ3/2

e´iθ4/2

eiθ3/2

eiθ4/2

. . .


.

We note that [An´1] takes the form

blkdiag(Q1, Q2, ¨ ¨ ¨ , Q2n´1) ,

where for each 1 ď k ď 2n´1, Qk = diag
(
e´iθ2k´1/2, e´iθ2k/2, eiθ2k´1/2, eiθ2k/2

)
for some

θ1, ¨ ¨ ¨ , θ2n P R.
In the following, for simplicity we will only write the sign and the sub-index of the angle

to express the matrix. For example, we will write

[An] = diag(´1,+1,´2,+2, ¨ ¨ ¨ ,´2n,+2n)

and

[An´1] = diag(´1,´2,+1,+2,´3,´4,+3,+4, ¨ ¨ ¨ ,´(2n ´ 1),´2n,+(2n ´ 1),+2n) .

98

Now we consider An´2. Similar to the previous case, we have

An´2 ” SWAPn´1,n ¨ An´1 ¨ SWAPn´1,n .

Note that

SWAPn´1,n = I2n´2 b SWAP b I2
= blkdiag(SWAP b I2,SWAP b I2, ¨ ¨ ¨ ,SWAP b I2

l jh n

2n´2 copies of SWAP b I2

)

=



I2
I2

I2
I2

I2
I2

I2
I2

. . .


and

(SWAP b I2) ¨ diag(a, b, c, d, e, f , g, h) ¨ (SWAP b I2)

=

I2
I2

I2
I2


diag(a, b)

diag(c, d)
diag(e, f)

diag(g, h)


I2

I2
I2

I2


=

diag(a, b)
diag(e, f)

diag(c, d)
diag(g, h)

 = diag(a, b, e, f , c, d, g, h) .

Therefore, [An´2] is obtained by

grouping the diagonal entries of [An´1] in groups of successive eight entries,
and exchanging the pair of the third and the fourth entries with the pair of
the fifth and the sixth entries in each group;

thus we conclude that

[An´2] = diag(´1,´2,´3,´4,+1,+2,+3,+4,´5,´6,´7,´8,+5,+6,+7,+8, ¨ ¨ ¨) .

99

We note that [An´2] takes the form

blkdiag(Q1, Q2, ¨ ¨ ¨ , Q2n´2) ,

where for each 1 ď k ď 2n´2,

Qk = diag
(
e´iθ4k´3/2, e´iθ4k´2/2, e´iθ4k´1/2, e´iθ4k/2, eiθ4k´3/2, eiθ4k´2/2, eiθ4k´1/2, eiθ4k/2

)
for some θ1, ¨ ¨ ¨ , θ2n P R.

In general, for each j we have Aj´1 = SWAPj,j+1 ¨ Aj ¨ SWAPj,j+1 and the fact that
SWAPj,j+1 = I2j´1 b SWAP b I2n´j implies that [An´j´1] is obtained by

grouping the diagonal entries of [An´j] in groups of successive 2j+2 entries,
dividing each group into 4 blocks of consecutive 2j entries, and exchanging
the two blocks in the middle

so that

[An´j] = diag(´1, ¨ ¨ ¨ ,´2j,+1, ¨ ¨ ¨ ,+2j,´(2j + 1), ¨ ¨ ¨ ,´2j+1,+(2j + 1), ¨ ¨ ¨ ,+2j+1, ¨ ¨ ¨) .

The identity above can be proved rigorously by induction.

Definition 3.110. An (n+1)-qubit gate L is called a multi-controlled rotation gate of type
F n
j+1(Ra) if there exist a unit vector a P R3 and real numbers ϕ0, ¨ ¨ ¨ , ϕ2n´1 such that

L(|x0y b ¨ ¨ ¨ b |xny) = |x0y b ¨ ¨ ¨ b |xj´1y b (Ra(ϕk)|xjy) b |xj+1y b ¨ ¨ ¨ b |xny

if (x0 ¨ ¨ ¨xj´1xj+1 ¨ ¨ ¨xn)2 = k, where for unit vector a = (ax, ay, az), Ra is a 1-qubit gate
given in Definition 2.10.

Remark 3.111. One possible quantum circuit for a multi-controlled rotation gate of type
F n
n+1(Ra), in term of 1-qubit quantum gate Ra(ϕ), is given by

. . .

. . .

. . .

. . .

. . .

|x0y

|xn´3y

|xn´2y

|xn´1y

|xny Ra(ϕ0) Ra(ϕ1) Ra(ϕ2) Ra(ϕ3) Ra(ϕ2n´1)

and quantum circuit for a multi-controlled rotation gate of type F n
j (Ra) can be constructed

using SWAP gates and the quantum circuit given above.

100

3.8 Unitary Decomposition
Unitary decomposition is the process of translating an arbitrary unitary gate into a specific
(universal) set of single and two-qubit gates. Unitary decomposition is necessary because
it is not otherwise possible to execute an arbitrary quantum gate on either a simulator or
quantum accelerator. This makes it a required feature for algorithms that use any type of
gate that is not supported by the target platform, or just produce an arbitrary unitary gate
that will need to be translated.

In order to decompose all possible unitary matrices into quantum gates, a universal gate
set is selected. This means the decomposition will result in circuits with (only) the following
three gates: rotations around the Y and Z axis by an arbitrary angle, the Rz(θ) and Ry(θ)

gates, and the controlled not, the CNOT gate:

Ry(θ) =

 cos θ

2
´ sin θ

2

sin θ

2
cos θ

2

 , Rz(θ) =

[
e´iθ/2 0

0 eiθ/2

]
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

3.8.1 1-qubit gate decomposition

We first focus on expressing 1 qubit gates (or 2 ˆ 2 unitary matrices) in terms of product
of qubit gates from the set

␣

Ry(θ),Rz(θ),Ph(θ)
ˇ

ˇ θ P R
(

,

where Ph is the global phase gate given by Ph(θ) = diag(eiθ, eiθ).

Theorem 3.112. For every 1-qubit gate U , there exist real numbers δ, θ, ξ and η such that

U = Ph(δ)Rz(ξ)Ry(θ)Rz(η) = Rz(ξ)Ry(θ)Rz(η)Ph(δ) .

Proof. Let U =

[
a b

c d

]
be a 2ˆ 2 unitary matrix. Corollary 3.67 implies that there exists

δ P R such that
det(U) = e2iδ . (3.22)

Define V ” e´iδU . Then V is also a unitary matrix; thus using the fact that V : = V ´1 and
det(V) = 1 we find that V takes the form

V =

[
α ´sβ
β sα

]
.

101

This further implies that U takes the form

U =

[
a b

c d

]
= eiδ

[
α ´sβ

β sα

]
,

The fact that |α|2 + |β|2 = 1 allows us to set α = eiµ cos θ

2
and β = eiν sin θ

2
for some µ, ν

and θ P R. Let ξ = ν ´ µ and η = ´µ ´ ν. Then

Rz(ξ)Ry(θ)Rz(η) =

[
e´i ξ

2 0

0 eiξ/2

] cos θ

2
´ sin θ

2

sin θ

2
cos θ

2

[e´iη/2 0

0 eiη/2

]

=

 e´iξ/2 cos θ

2
´e´iξ/2 sin θ

2

eiξ/2 sin θ

2
eiξ/2 cos θ

2

[e´iη/2 0

0 eiη/2

]

=

 ei
ξ+η
2 cos θ

2
´e´i ξ´η

2 sin θ

2

ei
ξ´η
2 sin θ

2
e´i ξ+η

2 cos θ

2

 =

[
α ´sβ

β sα

]

which concludes the theorem. ˝

‚ Algorithm of 1-qubit gate decomposition

Let U be a 1-qubit gate (or equivalently, 2 ˆ 2 unitary matrix).

Step 1: Find δ P R such that det(U) = e2iδ.

Step 2: Find µ, ν, θ such that eiµ cos θ

2
= ae´iδ and eiν sin θ

2
= ce´iδ.

Step 3: U = Ph(δ)Rz(ν ´ µ)Ry(θ)Rz(´µ ´ ν).

Example 3.113. Consider the decomposition of the X-gate. We follow the procedure give
above.

Step 1: Since det(X) = ´1, we choose δ = ´
π

2
so that det(X) = e2iδ.

Step 2: Since a = 0 and c = 1, we choose θ = π and ν =
π

2
(and µ can be given arbitrarily,

so we choose µ = 0) so that eiµ cos θ

2
= 0 = ae´iδ and eiν sin θ

2
= ei

π
2 = ce´iδ.

102

Step 3: X = Ph
(

´
π

2

)
Rz

(π
2

)
Ry(π)Rz

(
´

π

2

)
and we verify this identity as follows:

Ph
(

´
π

2

)
Rz

(π
2

)
Ry(π)Rz

(
´

π

2

)
=

[
e´iπ/2 0
0 e´iπ/2

] [
e´iπ/4 0
0 eiπ/4

] [
0 ´1
1 0

] [
eiπ/4 0
0 e´iπ/4

]
=

[
e´i3π/4 0

0 e´iπ/4

] [
0 ´e´iπ/4

eiπ/4 0

]
=

[
0 1
1 0

]
= X .

3.8.2 Singular value decomposition

Recall the spectral theorem from linear algebra given below:

Theorem 3.114 (Spectral). Let A be a Hermitian matrix; that is, A = A:. Then there
exists unitary matrix U and a real diagonal matrix D such that A = UDU :.

We note that the columns of U are eigenvectors of A and the diagonal elements of D are
eigenvalues of A. In fact, if A = UDU :, then AU = UD so that if vj is the j-th column of
U and λj is the (j, j)-entry of D, then Avj = λjvj.

Remark 3.115. The spectral theorem extends to a more general class of matrices, the
normal matrices. One can show that A is normal (that is, AA: = A:A) if and only if there
exists a unitary matrix U and a diagonal matrix D such that A = UDU :. Here the diagonal
matrix D can be complex.

Let A be a complex mˆn square matrix. Then A:A P Cnˆn and AA: P Cmˆm. Moreover,

1. A:A and AA: are both hermitian since

(A:A): = A:(A:): = A:A and (AA:): = (A:):A: = AA: .

2. A:A and AA: are both positive semi-definite since

xx, A:Axy = xAx, Axy = }Ax}2 ě 0 @ x P Cn

and
xx, AA:xy = xA:x, A:xy = }A:x}2 ě 0 @ x P Cm .

103

Therefore, Theorem 3.114 implies that there exist λ1 ě λ2 ě ¨ ¨ ¨ ě λn ě 0 and an orthonor-
mal basis tv1, v2, ¨ ¨ ¨ , vnu of Cn such that

A:Avk = λkvk @ 1 ď k ď n .

Let σk =
?
λk, and r = #

␣

1 ď k ď n
ˇ

ˇλk ą 0
(

; that is, A:A has r non-zero eigenvalues.
Define

uk =
1

σk
Avk for 1 ď k ď r .

Then

1. uk ‰ 0 for all 1 ď k ď r. Moreover,

}Avj}2 = xAvj, Avjy = xvj, A:Avjy = xvj, λjvjy = λj ;

thus the fact that A:A and A have the same null space implies that
␣

vr+1, ¨ ¨ ¨ , vn
(

is
an orthonormal basis of the null space of A.

2. tu1, ¨ ¨ ¨ ,uru is an orthonormal set since

xuk,uℓy =
1

σkσℓ
xAvk, Avℓy =

1

σkσℓ
xvk, A:Avℓy =

λℓ
σkσℓ

xvk, vℓy =
σℓ
σk
δkℓ .

3. tu1, ¨ ¨ ¨ ,uru are eigenvectors of AA: withe corresponding eigenvalues λ1, ¨ ¨ ¨ , λr since
for 1 ď j ď r,

AA:uj = AA:
(1

σj
Avj

)
=

1

σj
AA:Avj =

1

σj
A(λjvj) = λj

1

σj
Avj = λjuj .

By the fact that r = rank(A:A) = rank(A) = rank(A:) = rank(AA:) , the nullity (that
is, the dimension of the null space) of AA: is m ´ r; thus there exist an orthonormal
set tur+1, ¨ ¨ ¨ ,umu in the null space of AA:. Then

AA:uj = σ2
juj @ 1 ď j ď m.

Since tur+1, ¨ ¨ ¨ ,umu are eigenvectors of AA: (corresponding to eigenvalue 0), we find
that tu1, ¨ ¨ ¨ ,umu is an orthonormal basis of Cm.

104

Let U =
[
u1

... u2
... ¨ ¨ ¨

... um

]
and V =

[
v1

... v2
... ¨ ¨ ¨

... vn
]
, as well as

Σ =



σ1
σ2

. . .
σr

0
. . .


.

Then

AV = A
[
v1

... v2
... ¨ ¨ ¨

... vn
]
=
[
Av1

... Av2
... ¨ ¨ ¨

... Avn
]

=
[
σ1u1

... σ2u2
... ¨ ¨ ¨

... σrur
... 0 ... ¨ ¨ ¨

... 0
]

=
[
u1

... u2
... ¨ ¨ ¨

... um

]


σ1
σ2

. . .
σr

0
. . .


= UΣ .

The numbers σ1, σ2, ¨ ¨ ¨ , σn are called the singular values of A. The fact that U and V

are unitary shows the following

Theorem 3.116. Let A be a complex m ˆ n matrix. Then there exist unitary matrices
U P Cmˆm and V P Cnˆn as well as an m ˆ n matrix Σ of the form

Σ =



σ1
σ2

. . .
σr

0
. . .


,

where σ1 ě σ2 ě ¨ ¨ ¨ ě σr ą 0, such that A = UΣV :.

Remark 3.117. The decomposition A = UΣV : in Theorem 3.116 is called a singular
value decomposition of A. We note that since tur+1, ¨ ¨ ¨ ,umu is a chosen orthonormal
basis of the null space of AA:, the singular decomposition of A is not unique.

105

3.8.3 The CS decomposition

Theorem 3.118. For any 2 ˆ 2 partitioning
c1 c2

Q =

[
Q11 Q12

Q21 Q22

]
r1

r2
n = c1 + c2 = r1 + r2 , (3.23)

of an n ˆ n unitary matrix Q, there exist unitary matrices U1, U2, V1, V2 such that

U :QV =

[
U :
1 0

0 U :
2

] [
Q11 Q12

Q21 Q22

] [
V1 0
0 V2

]
=


I O:

s

C ´S
Oc ´I

Os I
S C

I O:
c

 ,

where C and S are diagonal matrices taking the form

C = diag(γ1, γ2, ¨ ¨ ¨ , γs) , 1 ą γ1 ě γ2 ě ¨ ¨ ¨ ě γs ą 0 , (3.24a)
S = diag(σ1, σ2, ¨ ¨ ¨ , σs) , 0 ă σ1 ď σ2 ď ¨ ¨ ¨ ď σs ă 1 (3.24b)

and satisfying C2 + S2 = I, and Os, Oc are matrices of zeros, and depending on Q and the
partition, may have no row or no columns. Some of the identity matrices may be nonexistent,
and no two of them need be equal. The four C and S matrices are square with the same
dimension, and may be nonexistent.

Proof. Choose unitary matrices U1 and V1 to give the usual singular value decomposition of
Q11, resulting in D11. Choose unitary matrices U2 and V2 so that D21 = U :

2Q21V1 is lower
triangular with non-negative real entries on the diagonals ending in the bottom right corners
andD12 = U :

1Q12V2 is upper triangular with non-positive real entries on the diagonals ending
in the bottom right corners. Define

D =

[
U :
1 0

0 U :
2

] [
Q11 Q12

Q21 Q22

] [
V1 0
0 V2

]
=

[
D11 D12

D21 D22

]
. (3.25)

Then D is unitary; thus the fact that any column (or row) of D has unit length implies that
no singular value of D11 can exceed 1. Therefore, D11 takes the form

D11 =

 Ikˆk

Csˆs

Opˆq



106

for some C taking the form (3.24a), and the orthogonality of columns of D and the orthog-
onality of rows of D further show that D21 and D12 must take the form

D12 =

 Okˆ(c2´s´p)

´Ssˆs

´Ipˆp

 , D21 =

 O(c1´s´q)ˆk

Ssˆs

Iqˆq

 , (3.26)

where p = r1 ´ k ´ s and q = c1 ´ k ´ s. The fact that each column and each row of D has
unit length also gives the form of D22 so that

D =


I O:

s

C ´S
Oc ´I

Os K L
S M N

I O:
c


for some (r2 ´ s´ q)ˆ (c2 ´ s´p) matrix K, (r2 ´ s´ q)ˆ s matrix L, sˆ (c2 ´ s´p) matrix
M and s ˆ s matrix N. The orthogonality of the second and the fourth blocks of columns
shows that SM = Osˆ(c2´s´p); thus M = Osˆ(c2´s´p) since S is non-singular. Similarly, the
orthogonality of the second and the fourth blocks of rows shows that L = O(r2´s´q)ˆs. Next,
from the fifth and the second blocks of rows, SC ´ NS = Osˆs, so N = C and we obtain that

D =


I O:

s

C ´S
Oc ´I

Os K
S C

I O:
c


Finally, note that r2 ´ s ´ q = r2 + k ´ c1 = c2 + k ´ r1 = c2 ´ s ´ p so that K is a square
matrix. Together with the fact that D:D = DD: = I, we find that KK: = K:K = I so that
K is unitary and can be transformed to I without altering the rest of D by replacing U2

with U2 blkdiag(K:, Isˆs, Iqˆq) in (3.25). ˝

Exercise 3.119. Write a function named CSD in matlab® in the format

[U,D,V] = CSD(Q)

which outputs the CS decomposition of a unitary matrix Q (so that D ” U :QV takes the

form
[

C ´S
S C

]
with C and S satisfying (3.24)).

107

Remark 3.120. Suppose that Q is an n-qubit quantum gate (that is, Q is an 2n ˆ 2n

unitary matrix). By partitioning Q into 2 ˆ 2 subblocks with equal size (that is, r1 = r2 =

c1 = c2 = 2n´1), Theorem 3.118 implies that there exist 2n´1 ˆ 2n´1 unitary matrices U1,
U2, V1, V2 (so that they are (n ´ 1)-qubit gates) such that

Q =

[
U1 0
0 U2

] [
C ´S
S C

] [
V :
1 0

0 V :
2

]

for some diagonal matrices C and S of the form

C =

 cos θ1
. . .

cos θ2n´1

 and S =

 sin θ1
. . .

sin θ2n´1

 ,

where 0 ď θ1 ď θ2 ď ¨ ¨ ¨ ď θ2n´1 ď
π

2
. In terms of quantum circuits, the case n = 3 can be

illustrated as follows:

Q =

Ry(2θ1) Ry(2θ2) Ry(2θ3) Ry(2θ4)

V :
1 V :

2 U1 U2

Figure 3.2: The CS decomposition in terms of quantum circuits

The 2-qubit gates U1, U2, V :
1 and V :

2 can be further decomposed. For example,

U1
=

Ry(2ϕ1) Ry(2ϕ2)

V :
11 V :

12 U11 U12

for some 0 ď ϕ1 ď ϕ2 ď
π

2
and quantum gates with matrix representations V11, V12, U11, U12

so that

108

U1

= Ry(2ϕ1) Ry(2ϕ2)

V :
11 V :

12 U11 U12

Figure 3.3: The decomposition of the controlled V :
1 gate

Combining all these quantum gates together, we see that the CS decomposition essentially
provides a way to express an n-qubit gate as the product of multi-controlled gates.

3.8.4 Decomposition of arbitrary quantum gates

By Theorem 3.112, any 1-qubit gate can be decomposed further as the product of rotation
gates Ry, Rz and phase gate Ph. Therefore, if the quantum gates V :

11 and V :
12 in Figure 3.3

can be expressed as

V :
11 = Rz(ξ1)Ry(η1)Rz(ϑ1)Ph(δ1) , V :

12 = Rz(ξ2)Ry(η2)Rz(ϑ2)Ph(δ2) ,

then the first two controlled V : gates can be further decomposed into

Ph(δ1) Rz(ϑ1) Ry(η1) Rz(ξ1) Ph(δ2) Rz(ϑ2) Ry(η2) Rz(ξ2)

and so on. Without any further modification, we can express an n-qubit gate as the product
of multi-controlled rotation gates, at the expense of some not implementable phase gates.
In this section, we talk about how to “cancel out” these phase gates and make an n-qubit
gate indeed the product of multi-controlled rotation gates.

Before proceeding, we note that if P is a 2n´1 ˆ 2n´1 diagonal unitary matrix; that is,
P takes the form

P = diag
(
eiα1 , ¨ ¨ ¨ , eiα2n´1

)
for some α1, ¨ ¨ ¨ , α2n´1 P R ,

then [
P 0
0 P

] [
C ´S
S C

]
=

[
C ´S
S C

] [
P 0
0 P

]
.

109

Therefore, if P is a 2n´1 ˆ 2n´1 diagonal unitary matrix, then P : is also a 2n´1 ˆ 2n´1

diagonal unitary matrix so that the decomposition above implies that

Q =

[
U1 0
0 U2

] [
P 0
0 P

] [
P : 0
0 P :

] [
C ´S
S C

] [
V :
1 0

0 V :
2

]
=

[
U1 0
0 U2

] [
P 0
0 P

] [
C ´S
S C

] [
P : 0
0 P :

] [
V :
1 0

0 V :
2

]
.

The diagonal unitary matrix P will be chosen to “cancel out the phase gate” so that the

matrix
[
U1 0
0 U2

] [
P 0
0 P

]
is a product of multi-controlled rotation gates.

Let U be a n-qubit quantum gate. By Remark 3.120 U can be decomposed as

U =

[
U1
11 0

0 U1
12

] [
P 1
11 0
0 P 1

11

] [
C1

11 ´S1
11

S1
11 C1

11

] [
P 1:
11 0

0 P 1:
11

] [
V 1:
21 0

0 V 1:
22

]
,

where P 1
11 is an arbitrary 2n´1 ˆ 2n´1 diagonal unitary matrix. Write P 1:

11V
1:
21 = U1

21 and
P 1:
11V

1:
22 = U1

22. Then

U =

[
U1
11 0

0 U1
12

] [
P 1
11 0
0 P 1

11

] [
C1

11 ´S1
11

S1
11 C1

11

] [
U1
21 0

0 U1
22

]
,

and the decomposition can be applied recursively to the sub-matrices U i
jk until a 2 ˆ 2

block-diagonal form is encountered. For example, we use the CS decomposition to write

U1
11 = U2

111P
2
111A

2
11P

2:
111V

2:
112 , U1

12 = U2
121P

2
121A

2
12P

2:
121V

2:
122 ,

so that by defining U2
112 = P 2:

111V
2:
112 and U2

122 = P 2:
121V

2:
122,[

U1
11 0

0 U1
12

]
=

[
U2
111P

2
111A

2
11U

2
112 0

0 U2
121P

2
121A

2
12U

2
122

]

=

[
U2
111 0

0 U2
121

][
P 2
111 0

0 P 2
121

][
A2

11 0

0 A2
12

][
U2
112 0

0 U2
122

]
.

We note that in principle we need to specify P 1
11 first before we can decompose U1

21 and U1
22

further since U1
21 and U1

22 depend on P 1
11.

In general, with U0
1 denoting U , for 1 ď i ď n and 1 ď j ď 2i´1, we use the CS

decomposition on each block of U i´1
j to write

U i´1
j = U i

2j´1P
i
2j´1A

i
2j´1P

i:
2j´1V

i:
2j ,

110

where U i
2j´1 and U i

2j ” P i:
2j´1V

i:
2j are block diagonal matrices consisting of 2i blocks of

2n´i ˆ 2n´i unitary matrices, P i
2j´1 is a block diagonal matrix of the form

P i
2j´1 = blkdiag

(
Qi

1, Q
i
1, Q

i
2, Q

i
2, ¨ ¨ ¨ , Qi

2i´1 , Qi
2i´1

)
for some 2n´i ˆ 2n´i diagonal unitary matrices Qi

1, ¨ ¨ ¨ , Qi
2i´1 to be determined. We also

note that U i
2j depends on P i

2j´1.
Define P i

2j = P i´1
j and Ai2j = Ai´1

j . We then have the following sequence of decomposi-
tion

U = U1
1P

1
1A

1
1U

1
2 = U2

1P
2
1A

2
1U

2
2P

2
2A

2
2U

2
3P

2
3A

2
3U

2
4 = U2

1P
2
1A

2
1U

2
2P

2
2A

2
2U

2
3P

2
3A

2
3U

2
4

= U3
1P

3
1A

3
1U

3
2P

3
2A

3
2U

3
3P

3
3A

3
3U

3
4P

3
4A

3
4U

3
5P

3
5A

3
5U

3
6P

3
6A

3
6U

3
7P

3
7A

3
7U

3
8 = ¨ ¨ ¨

= Un´1
1 P n´1

1 An´1
1 Un´1

2 P n´1
2 An´1

2 Un´1
3 P n´1

3 An´1
3 ¨ ¨ ¨Un´1

2n´1´1P
n´1
2n´1´1A

n´1
2n´1´1U

n´1
2n´1

=
(2n´1´1

ź

j=1

Un´1
j P n´1

j An´1
j

)
Un´1
2n´1 . (3.27)

Here the upper index denotes the level of recursion, whereas the lower index denotes the
position of the matrix within the resulting matrix product. In (3.27),

1. Un´1
j takes the form

Un´1
j = blkdiag(U1, U2, ¨ ¨ ¨ , U2n´1)

for some 2 ˆ 2 unitary matrices U1, ¨ ¨ ¨ , U2n´1 .

2. For each j P N, let the number γ(j) indicate the position (counting from the lowest
bit) of the right-most non-zero bit in the binary presentation of the number j. In
other words, for each j P N, γ(j) is the unique integer satisfying

j = 2γ(j)´1(2k ´ 1) for some k P N .

Then P n´1
j = P n´1

2γ(j)´1(2k´1)
= P

n´γ(j)
2k´1 and An´1

j = An´1
2γ(j)´1(2k´1)

= A
n´γ(j)
2k´1 which imply

that P n´1
j and An´1

j appear first time in the (n´γ(j))-th recursion of decompositions
and do not appear in any previous recursion of decompositions. Therefore, P n´1

j takes
the form

P n´1
j = blkdiag

(
Q1, Q1, ¨ ¨ ¨ , Q2n´γ(j)´1 , Q2n´γ(j)´1

)
for some 2γ(j) ˆ 2γ(j) diagonal unitary matrices Q1, ¨ ¨ ¨ , Q2n´γ(j)´1 , and An´1

j takes the
form

An´1
j = blkdiag

([
C1 ´S1

S1 C1

]
,

[
C2 ´S2

S2 C2

]
, ¨ ¨ ¨ ,

[
C2n´γ(j)´1 ´S2n´γ(j)´1

S2n´γ(j)´1 C2n´γ(j)´1

])
, (3.28)

111

where for each 1 ď k ď 2n´γ(j)´1,

Ck = diag(cos θk1 , ¨ ¨ ¨ , cos θk2γ(j)) and Sk = diag(sin θk1 , ¨ ¨ ¨ , sin θk2γ(j))

for some 0 ď θk1 ď θk2 ď ¨ ¨ ¨ ď θk
2γ(j)

ď
π

2
. We note that An´1

j is indeed a multi-
controlled gate of type F n

n´γ(j)(Ry).

3. P n´1
j can be chosen according to Un´1

j so that Un´1
j P n´1

j is a product of multi-
controlled rotation gates (which will be explained soon). On the other hand, for each
1 ď j ď 2n ´ 1 the block diagonal matrix Un´1

j+1 depends on P n´1
k for all 1 ď k ď j;

thus we need to specify P n´1
1 , P n´1

2 , ¨ ¨ ¨ successively in order to complete the decom-
position.

Remark 3.121. In matlab®, γ can be implemented by

γ(j) = min(find(de2bi(j) == 1)).

Now we determine P n´1
1 . Since Un´1

1 is a block diagonal matrix consisting of 2n´1 blocks
of 2 ˆ 2 unitary matrices Un´1

11 , ¨ ¨ ¨ , Un´1
12n´1 ; that is,

Un´1
1 =


Un´1
11

Un´1
12

. . .
Un´1
12n´1

 ,

by Theorem 3.112 for each 1 ď j ď 2n´1 there exist δj, ξj, θj, ηj such that

Un´1
1j = Rz(ξj)Ry(θj)Rz(ηj)Ph(δj) ;

thus

U n´1
1 =

Rz(ξ1)
. . .

Rz(ξ2n´1)


Ry(θ1)

. . .
Ry(θ2n´1)


Rz(η1)

. . .
Rz(η2n´1)


Ph(δ1)

. . .
Ph(δ2n´1)

 .

For each 1 ď j ď 2n´2, let αj = ´
δ2j´1 + δ2j

2
. Define Qj = diag(eiαj , eiαj) and βj =

δ2j ´ δ2j´1. Then

Ph(δ2j´1)Qj = diag
(
e´iβj/2, e´iβj/2

)
and Ph(δ2j)Qj = diag

(
eiβj/2, eiβj/2

)

112

so that

blkdiag
(
Ph(δ2j´1),Ph(δ2j)

)
¨ blkdiag(Qj, Qj) = diag(e´iβj/2, e´iβj/2, eiβj/2, eiβj/2) .

Therefore, by defining P n´1
1 = blkdiag

(
Q1, Q1, Q2, Q2, ¨ ¨ ¨ , Q2n´1 , Q2n´1

)
we have

blkdiag
(
Ph(δ1), ¨ ¨ ¨ ,Ph(δ2n´1)

)
P n´1
1

= diag
(
e´iβ1/2, e´iβ1/2, eiβ1/2, eiβ1/2, e´iβ2/2, e´iβ2/2, eiβ2/2, eiβ2/2, ¨ ¨ ¨

¨ ¨ ¨ , e´iβ2n´2/2, e´iβ2n´2/2, eiβ2n´2/2, eiβ2n´2/2
)
.

which, by Example 3.109, is a multi-controlled gate of type F n
n (Rz) (with θ2j´1 = θ2j for

all 1 ď j ď 2n´1). In other words, by multiplying P n´1
1 on the right-hand side of the block

diagonal matrix generated by the phases of each 2 ˆ 2 unitary matrix, we obtain a multi-
controlled gate whose target qubit is the (n ´ 1)-th qubit. This shows that Un´1

1 P n´1
1 is a

product of multi-controlled gates in which the rotation gates involved are Ry and Rz.
Suppose that P n´1

1 , ¨ ¨ ¨ , P n´1
j´1 are specified so that Un´1

2 , ¨ ¨ ¨ , Un´1
j are determined ac-

cordingly. Since Un´1
j is also a block diagonal matrix consisting of 2n´1 blocks of 2 ˆ 2

unitary matrices Un´1
j1 , ¨ ¨ ¨ , Un´1

j2n´1 , by Theorem 3.112 we can decompose Un´1
j as

Un´1
j = blkdiag

(
Rz(ξ1), ¨ ¨ ¨ ,Rz(ξ2n´1)

)
¨ blkdiag(Ry(θ1), ¨ ¨ ¨ ,Ry(θ2n´1)

)
¨

¨ blkdiag
(
Rz(η1), ¨ ¨ ¨ ,Rz(η2n´1)

)
¨ blkdiag

(
Ph(δ1), ¨ ¨ ¨ ,Ph(δ2n´1)

)
for some ξ1, ¨ ¨ ¨ , ξ2n´1 , θ1, ¨ ¨ ¨ , θ2n´1 , η1, ¨ ¨ ¨ , η2n´1 and δ1, ¨ ¨ ¨ , δ2n´1 . We note that these ξj’s,
θj’s, ηj’s and δj’s are in principle different from those values used in the decomposition of
Un´1
1 , ¨ ¨ ¨ , Un´1

j´1 .
For 1 ď k ď n ´ γ(j) ´ 1 and 1 ď ℓ ď 2γ(j), define

α(k´1)2γ(j)+ℓ = ´
1

2

(
δ(k´1)2γ(j)+[ℓ+1

2
] + δ(k´1)2γ(j)+2γ(j)´1+[ℓ+1

2
]

)
,

where
[ℓ+ 1

2

]
in the sub-index denotes the largest integer which is not greater than ℓ+ 1

2
.

Let
Qk = diag

(
e
iα

2(k´1)γ(j)+1 , ¨ ¨ ¨ , eiα2kγ(j)
)

and
P n´1
j = blkdiag

(
Q1, Q1, Q2, Q2, ¨ ¨ ¨ , Q2n´γ(j)´1 , Q2n´γ(j)´1

)
,

113

we find that blkdiag
(
Ph(δ1), ¨ ¨ ¨ ,Ph(δ2n´1))P n´1

j , with N denoting 2γ(j), takes the form

diag(e´iβ1/2, e´iβ2/2, ¨ ¨ ¨ , e´iβN/2, eiβ1/2, eiβ2/2, ¨ ¨ ¨ , eiβN/2,

e´iβN+1/2, e´βN+2/2, ¨ ¨ ¨ , e´iβ2N/2, eiβN+1/2, eβN+2/2, ¨ ¨ ¨ , eiβ2N/2,

¨ ¨ ¨ , e´iβ2n´1´N+1/2, e´β2n´1´N+2/2, ¨ ¨ ¨ , e´iβ2n´1/2, eiβ2n´1´N+1/2, eβ2n´1´N+2/2, ¨ ¨ ¨ , eiβ2n´1/2
)

for some β1, ¨ ¨ ¨ , β2n´1 P R. By Example 3.109, it is a multi-controlled gate of type
F n
n´γ(j)(Rz) whose target qubit is the (n ´ γ(j))-th qubit. Therefore, Un´1

j P n´1
j is the

product of multi-controlled gates in which the rotation gates involved are Ry and Rz.
Let U be an n-qubit gate (or equivalently, 2n ˆ 2n unitary matrix). Using (3.27),

U =
(2n´1´1

ź

j=1

Un´1
j P n´1

j An´1
j

)
Un´1
2n´1 ,

where Un´1
j is a block diagonal of 2ˆ 2 matrix for all j, and Aij takes the form (3.28). From

the argument above, we know that Un´1
j P n´1

j is the product of multi-controlled gates, while
each An´1

j is a multi-controlled gate of type F n
n´γ(j)(Ry). Therefore, in order to implement

the quantum gate with matrix representation U using quantum circuits, it suffices to consider
how to implement a multi-controlled gate in which the rotation gate involved is Ry or Rz.

Theorem 3.122. Each 2n+1 ˆ 2n+1 unitary matrix can be expressed as the product of
multi-controlled rotation gates of type F n

k (Ry) and F n
k (Rz), k = 1, 2, ¨ ¨ ¨ , n+ 1.

3.9 Implementation of Multi-Controlled Rotation Gates

In this section we are concerned with the implementation of multi-controlled rotation gates of
type F n

n+1(Ra) with unit vector a = (0, ay, az) using quantum circuits. The implementation
of multi-controlled gate of this type is the building block of the implementation of general
quantum gates. We note that multi-controlled rotation gate of type F n

k (Ra), where 1 ď k ď

n, can be obtained by applying several swap operations on multi-controlled rotation gate of
type F n

n+1(Ra); thus arbitrary multi-controlled rotation gates can also be implemented even
though we only focus on the case of F n

n+1(Ra).
Recall that Example 3.106 shows that the matrix representation of multi-controlled

114

rotation gates of type F n
n+1(Ra) takes the form

R = blkdiag
(
Ra(ϕ1), ¨ ¨ ¨ , Ra(ϕ2n)

)
=


Ra(ϕ1)

Ra(ϕ2)
. . .

Ra(ϕ2n)

 , (3.29)

where for a given unit vector a = (ax, ay, az) and angle ϕ, the rotation matrix Ra(ϕ) is given
by (2.8) or equivalently,

Ra(ϕ) = I cos ϕ
2
+ i(axσx + ayσy + azσz) sin ϕ

2
,

in which σx, σy and σz are the Pauli matrices

σx = X =

[
0 1
1 0

]
, σy = Y =

[
0 ´i
i 0

]
, σz = Z =

[
1 0
0 ´1

]
.

Such operator Ra(ϕ) is called the rotation (of a qubit) about the three-dimensional vector
a with angle ϕ (on the Bloch sphere), and has the following properties:

1. Ry(ϕ) = R(0,1,0)(´ϕ) = R(0,´1,0)(ϕ) for all ϕ P R.

2. Rz(ϕ) = R(0,0,1)(´ϕ) = R(0,0,´1)(ϕ) for all ϕ P R.

3. Ra(ϕ)
: = Ra(´ϕ) for all unit vectors a P R3 and ϕ P R.

4. Ra(ϕ) is unitary for all unit vectors a P R3 and ϕ P R.

5. Ra(θ)Ra(ϕ) = Ra(θ + ϕ) for all unit vectors a P R and θ, ϕ P R.

6. XRa(ϕ)X = Ra(´ϕ) for all unit vectorss a = (0, ay, az) P R3 and ϕ P R.

We use the following example of the idea of the implementation of a 4-qubit multi-
controlled rotation gate of type F 3

4 (Ra) with unit vector a = (0, ay, az).

Example 3.123. Let a = (0, ay, az) be a unit vector in R3. In this example we consider
the multi-controlled 4-qubit gate given by

|ky b |yy ÞÑ |jy b (Ra(αj)|yy) if |ky = |jy ,

where |ky = |k3y b |k2y b |k1y with k = (k3k2k2)2. In Example 3.106, we have shown that
the matrix representation of this quantum gate is

blkdiag(Ra(α1), Ra(α2), ¨ ¨ ¨ , Ra(α8)) ,

115

and we would like to express this multi-controlled gate as a sequence of implementable quan-
tum circuits (such as CNOT and some 1-qubit gate) on a 4-qubit system. In particular, we
would like to find C1, C2, ¨ ¨ ¨ , Ck P

␣

CNOT1,4,CNOT2,4,CNOT3,4

(

and 16ˆ 16 block diag-
onal matrix R1, R2, ¨ ¨ ¨ , Rk of the form Rj = blkdiag

(
Ra(θj), Ra(θj), ¨ ¨ ¨ , Ra(θj)
l jh n

8 copies of Ra(θj)

)
(which is

the matrix representation of I2 b I2 b I2 b Ra(θj)) for some θj P R so that

blkdiag(Ra(α1), Ra(α2), ¨ ¨ ¨ , Ra(α8)) = C8R8C7R7 ¨ ¨ ¨C2R2C1R1 . (3.30)

Here we recall that CNOTi,4 denotes the controlled-not gate whose control qubit is the i-th
qubit while the target qubit is the 4-th qubit, and the matrix representation of CNOT1,4,
CNOT2,4, CNOT3,4 are given by

CNOT1,4 = blkdiag(I2, I2, I2, I2,X,X,X,X) ,

CNOT2,4 = blkdiag(I2, I2,X,X, I2, I2,X,X) ,

CNOT3,4 = blkdiag(I2,X, I2,X, I2,X, I2,X) .

Define rRk by

rRk = C8C7 ¨ ¨ ¨CkRkCkCk+1 ¨ ¨ ¨C8 .

By the fact that CjCj = I16 and CjCk = CkCj for all 1 ď j, k ď 8, we find that

rR8
rR7 ¨ ¨ ¨ rR1 = (C8R8C8)(C8C7R7C7C8)(C8C7C6R6C6C7C8) ¨ ¨ ¨ (C8 ¨ ¨ ¨C1R1C1 ¨ ¨ ¨C8)

= (C8R8)(C7R7C7)(C7C6R6C6C7) ¨ ¨ ¨ (C7 ¨ ¨ ¨C1R1C1 ¨ ¨ ¨C8)

= (C8R8)(C7R7)(C6R6C6) ¨ ¨ ¨ (C6 ¨ ¨ ¨C1R1C1 ¨ ¨ ¨C8)

= ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

= (C8R8)(C7R7)(C6R6) ¨ ¨ ¨ (C1R1)(C1 ¨ ¨ ¨C8)

so that

C8R8C7R7 ¨ ¨ ¨C1R1 = rR8
rR7 ¨ ¨ ¨ rR1 ¨ (C1C2 ¨ ¨ ¨C8) .

116

Since XRa(ϕ)X = ´Ra(ϕ) for all a = (0, ay, az), we find that for all ϕ1, ϕ2, ¨ ¨ ¨ , ϕ8 P R,

CNOT1,4 ¨ blkdiag
(
Ra(ϕ1), Ra(ϕ2), ¨ ¨ ¨ , Ra(ϕ8)

)
¨ CNOT1,4

= blkdiag
(
Ra(ϕ1), Ra(ϕ2), Ra(ϕ3), Ra(ϕ4), Ra(´ϕ5), Ra(´ϕ6), Ra(´ϕ7), Ra(´ϕ8)

)
,

CNOT2,4 ¨ blkdiag
(
Ra(ϕ1), Ra(ϕ2), ¨ ¨ ¨ , Ra(ϕ8)

)
¨ CNOT2,4

= blkdiag
(
Ra(ϕ1), Ra(ϕ2), Ra(´ϕ3), Ra(´ϕ4), Ra(ϕ5), Ra(ϕ6), Ra(´ϕ7), Ra(´ϕ8)

)
,

CNOT3,4 ¨ blkdiag
(
Ra(ϕ1), Ra(ϕ2), ¨ ¨ ¨ , Ra(ϕ8)

)
¨ CNOT3,4

= blkdiag
(
Ra(ϕ1), Ra(´ϕ2), Ra(ϕ3), Ra(´ϕ4), Ra(ϕ5), Ra(´ϕ6), Ra(ϕ7), Ra(´ϕ8)

)
.

Therefore, rRk must take the form

blkdiag
(
Ra(bk1θk), Ra(bk2θk), ¨ ¨ ¨ , Ra(bk8θk)

)
,

where bkj = ˘1 and bkj is determined by Ck, ¨ ¨ ¨ , C8. In fact, with rj denoting the symbol of
Cj (see Remark 3.103 for symbols of CNOT gates) and .̊ denoting the Hadamard product
given by [

u1, u2, ¨ ¨ ¨ , un
]
.̊
[
v1, v2, ¨ ¨ ¨ , vn

]
=
[
u1v1, u2v2, ¨ ¨ ¨ , unvn

]
,

we have

bk ”
[
bk1, bk2, ¨ ¨ ¨ , bk8

]
= rk .˚ ¨ ¨ ¨ .˚ r7 .˚ r8 . (3.31)

Let M be the 8 ˆ 8 Hadamard matrix; that is,

M ”
?
2
3H3 =



1 1 1 1 1 1 1 1
1 ´1 1 ´1 1 ´1 1 ´1
1 1 ´1 ´1 1 1 ´1 ´1
1 ´1 ´1 1 1 ´1 ´1 1
1 1 1 1 ´1 ´1 ´1 ´1
1 ´1 1 ´1 ´1 1 ´1 1
1 1 ´1 ´1 ´1 ´1 1 1
1 ´1 ´1 1 ´1 1 1 ´1


.

and denote the k-th row of M by Sk´1. The symbol for CNOT3,4, CNOT2,4 and CNOT1,4

are then S1, S2 and S4, respectively. Note that the identity Ra(θ)Ra(ϕ) = Ra(θ+ϕ) implies

117

that

rR8
rR7 ¨ ¨ ¨ rR1 = blkdiag

(
Ra(b81θ8), Ra(b82θ8), ¨ ¨ ¨ , Ra(b88θ8)

)
¨ blkdiag

(
Ra(b71θ7), Ra(b72θ7), ¨ ¨ ¨ , Ra(b78θ7)

)
¨ ¨ ¨ ¨ blkdiag

(
Ra(b11θ1), Ra(b12θ1), ¨ ¨ ¨ , Ra(b18θ1)

)
= blkdiag

(
Ra(b81θ8 + b71θ7 + ¨ ¨ ¨ + b11θ1), Ra(b82θ8 + b72θ7 + ¨ ¨ ¨ + b12θ1), ¨ ¨ ¨ ,

Ra(b88θ8 + b78θ8 + ¨ ¨ ¨ + b18θ1)
)
. (3.32)

The computation above motivates us to choose r1, r2, ¨ ¨ ¨ , r8 P
␣

S1, S2, S4

(

(which is equiv-
alent of choosing C1, ¨ ¨ ¨ , C8 P

␣

CNOT1,4,CNOT2,4,CNOT3,4

(

) such that bk given by
bk = rk .̊ ¨ ¨ ¨ .˚ r7 .̊ r8 satisfying

1. b1 = S0 (if so, then C1C2 ¨ ¨ ¨C8 = I16 which implies that C8R8C7R7 ¨ ¨ ¨C1R1 =

rR8
rR7 ¨ ¨ ¨ rR1).

2. The collection tb1, b2, ¨ ¨ ¨ , b8u is linearly independent (so that it is a permutation of
tS0, S1, ¨ ¨ ¨ , S7u).

If we are able to find such r1, ¨ ¨ ¨ , r8, then we choose θ1, ¨ ¨ ¨ , θ8 satisfying
b11 b21 ¨ ¨ ¨ b81
b12 b22 ¨ ¨ ¨ b82
...
b18 b28 ¨ ¨ ¨ b88



θ1
θ2
...
θ8

 =


α1

α2
...
α8

 (3.33)

whose solvability is guaranteed by property 2 above (since the B matrix has full column
rank). Such θk’s will then verify (3.30) becuase of (3.32) and (3.33), as well as the fact that
C1 ¨ ¨ ¨C8 = I16.

Finally, let us talk about how to find r1, r2, ¨ ¨ ¨ , r8 P
␣

S1, S2, S4

(

satisfying the two prop-
erties above. First we establish some rules of multiplications of S 1

is (since b are Hadamard
product of some r’s). Note that

S1 .˚ S2 = S3 , S1 .̊ S4 = S5 , S2 .̊ S4 = S6 , S1 .˚ S2 .̊ S4 = S7

118

so we have

M =



ones(1, 8) ” S0

S1

S2

S1 .̊ S2

S4

S1 .̊ S4

S2 .̊ S4

S1 .˚ S2 .̊ S4


.

Therefore, all rows of M can be generated by S1, S2 and S4 using the Hadamard product
.˚ and we have

Si .˚ Sj = Si+j @ i, j P t1, 2, 4u and S1 .˚ S2 .̊ S4 = S7 . (3.34)

In order to compute Si .̊ Sj for general 0 ď i, j ď 7, we write

Sℓ = S xℓ
1 .˚ S yℓ

2 .˚ S zℓ
4 @ 0 ď ℓ ď 7

and use the formula
Si .̊ Sj = S

xi‘xj
1 .˚ S

yi‘ yj
2 .˚ S

zi‘ zj
4 , (3.35)

where ‘ is the addition in Z2, S0
k ” S0 for k = 1, 2, 4, and we use the fact that Si .̊ Si = S0

and Si .˚ Sj = Sj .˚ Si for Si, Sj P
␣

S1, S2, S4

(

to conclude the identity. We note that using
(3.34), by writing ℓ = (ℓ2ℓ1ℓ0)2 we have

Sℓ = S ℓ0
1 .̊ S ℓ1

2 .˚ S ℓ2
4

so that (3.35) becomes

Si .̊ Sj = S i0‘j0
1 .̊ S i1‘j1

2 .̊ S i2‘j2
4 @ 0 ď i, j ď 7 , i = (i2i1i0)2, j = (j2j1j0)2 .

The use of (3.34) further shows that

S(i2i1i0)2 .˚ S(j2j1j0)2 = S(k2k1k0)2 where iℓ, jℓ P t0, 1u and kℓ = iℓ ‘ jℓ .

By identifying S(ℓ2ℓ1ℓ0)2 as (ℓ2, ℓ1, ℓ0), we find that the group (tS0, S1, ¨ ¨ ¨ , S7u, .˚) is isomor-
phic to the group (Z2 ˆ Z2 ˆ Z2,‘), where ‘ on Z2 ˆ Z2 ˆ Z2 is given by

(i2, i1, i0) ‘ (j2, j2, j0) ” (i2 ‘ j2, i1 ‘ j1, i0 ‘ j0) , iℓ, jℓ P t0, 1u ;

119

that is, there exists a bijection φ : tS0, ¨ ¨ ¨ , S7u Ñ Z2 ˆ Z2 ˆ Z2 given by φ(S(k2k1k0)2) =

(k2, k1, k0) such that

φ
(
S(i2i1i0)2 .˚ S(j2j1j0)2

)
= φ

(
S(i2i1i0)2) ‘ φ

(
S(j2j1j0)2

)
= (i2 ‘ j2, i1 ‘ j1, i0 ‘ j0) .

Now, since rj are symbols of CNOT1,4, CNOT2,4 or CNOT3,4, rj = S(xjyjzj)2 for some
xj, yj, zj P t0, 1u with the property that one and only one of xj, yj, zj is 1. Since

(xk, yk, zk) ‘ ¨ ¨ ¨ ‘ (x8, y8, z8) = (xk ‘ ¨ ¨ ¨ ‘ x8, yk ‘ ¨ ¨ ¨ ‘ y8, zk ‘ ¨ ¨ ¨ ‘ z8) ,

we find that φ(bk) and φ(bk+1), the correspondence of bk and bk+1 in Z2 ˆ Z2 ˆ Z2, differs
by only one slot/bit (since every addition of new rk to bk+1 corresponds to the addition
of (0, 0, 0), (0, 1, 0) or (1, 0, 0) to φ(bk+1) in Z2 ˆ Z2 ˆ Z2). This motivates the idea of the
reflected binary code (also called Gray code) which is a scheme for listing all n-bit binary
numbers so that successive numbers differ in exactly one bit. A 3-qubit reflected Gray code
is given by [0, 1, 3, 2, 6, 7, 5, 4]. We list these numbers in terms of binary representation in
the following table and one can see that adjacent numbers differ by one bit.

j = (j2j1j0)2 0 1 3 2 6 7 5 4 0
j2 0 0 0 0 1 1 1 1 0
j1 0 0 1 1 1 1 0 0 0
j0 0 1 1 0 0 1 1 0 0

From the table above, b1, b2, ¨ ¨ ¨ , b8 correspond to (0, 0, 0), (0, 0, 1), ¨ ¨ ¨ , (1, 0, 0) in Z2 ˆ

Z2 ˆ Z2. How do we find rj? Note that bk = rk .˚ bk+1; thus

rk = rk .˚ bk+1 .˚ bk+1 = bk .˚ bk+1 @ 1 ď j ď 7 , r8 = b8 . (3.36)

Therefore, r1 corresponds to the element (0, 0, 0) ‘ (0, 0, 1) in Z2 ˆ Z2 ˆ Z2, r2 corresponds
to the element (0, 0, 1) ‘ (0, 1, 1) in Z2 ˆ Z2 ˆ Z2, and etc. This implies that r1 = S1 and
r2 = S2, and so on. Note that the addition in fact indicates the bit where bk and bk+1

differ (which is shown as boldface colored 0 or 1 in the table). Moreover, the position of
the different bit is in fact the position of the control qubit in the CNOT gate (for example,
the bit where b1 and b2 differs locates in the 3rd qubit; thus r1 = CNOT3,4). Therefore, a
choice of C1, C2, ¨ ¨ ¨ , C8 can be

␣

CNOT3,4,CNOT2,4,CNOT3,4,CNOT1,4,CNOT3,4,CNOT2,4,CNOT1,4,CNOT1,4

(

.

120

We summarize the discussion in Example 3.123 and state the general procedure of the
decomposition of multi-controlled (n + 1)-qubit gate (with first n-qubit as control qubits)
as follows. Let N = 2n.

1. Our goal is to write the matrix representation of a multi-controlled gate in the form

blkdiag(Ra(α1), Ra(α2), ¨ ¨ ¨ , Ra(αN)) = CNRNCN´1RN´1 ¨ ¨ ¨C2R2C1R1 , (3.37)

where a = (0, ay, az) is a unit vector, Ck P tCNOT1,n+1, ¨ ¨ ¨ ,CNOTn,n+1u and Rk =

blkdiag
(
Ra(θk), ¨ ¨ ¨ , Ra(θk)

)
for all 1 ď k ď N .

2. Using the property that Ci = C´1
i and Ci, Cj commute, the right-hand side of (3.37)

can be rewritten as

CNRNCN´1RN´1 ¨ ¨ ¨C2R2C1R1 = rRN
rRN´1 ¨ ¨ ¨ rR1 ¨ (C1C2 ¨ ¨ ¨CN) ,

where rRk = (CkCk+1 ¨ ¨ ¨CN)Rk(CNCN´1 ¨ ¨ ¨Ck).

3. The effect of Ck ¨ ¨ ¨CN on Rk leads to the result

rRk = blkdiag
(
Ra(bk1θk), Ra(bk2θk), ¨ ¨ ¨ , Ra(bkNθk)

)
,

where bk = [bk1, bk2, ¨ ¨ ¨ , bkN] are Hadamard product of the symbols of Ck, ¨ ¨ ¨ , CN ,
respectively, or to be more precise,

bk ”
[
bk1, bk2, ¨ ¨ ¨ , bkN

]
= rk .̊ ¨ ¨ ¨ .̊ rN´1 .̊ rN , (3.38)

where rj are symbol of Cj introduced in Remark 3.103.

4. We choose r1, ¨ ¨ ¨ , rN properly from
␣

S2k

ˇ

ˇ 0 ď k ď n´1
(

, where S2k is the (2k+1)-th
row of M =

?
2
nHn, so that the corresponding bk satisfies

(a) b1 = ones(1, N);

(b) the collection tb1, b2, ¨ ¨ ¨ , bNu is linearly independent so that it is a permutation
of the rows of M.

Once we have these bk’s, we then solve
b11 b21 ¨ ¨ ¨ bN1

b12 b22 ¨ ¨ ¨ bN2
... ...
b1N b2N ¨ ¨ ¨ bNN



θ1
θ2
...
θ8

 =


α1

α2
...
α8

 (3.33)

to obtain θ1, ¨ ¨ ¨ , θN .

121

5. Let tx1, x2, ¨ ¨ ¨ , xNu be a reflected binary code (with x1 = 0) for the list of numbers
t0, 1, ¨ ¨ ¨ , N ´ 1u, and f : t1, ¨ ¨ ¨ , Nu Ñ t1, ¨ ¨ ¨nu be defined by

f(j) is the location where the bit expression of xj and xj+1 differ (xN+1 ” 0).

Then a choice of C1, C2, ¨ ¨ ¨ , CN and b1, b2, ¨ ¨ ¨ , bN are given by

Cj = CNOTf(j),n+1 , bj = the binary expression of xj.

Remark 3.124. A way to obtain a reflected binary code for the numbers t0, 1, 2, ¨ ¨ ¨ , 2n´1u

is given as follows: 假設原始的值從 0 開始，格雷碼產生的規律是:

1. 第一步, 改變最右邊的位元值；

2. 第二步，改變右邊起第一個為 1 的位元的左邊的位元；

3. 重複第一步和第二步，直到所有的格雷碼產生完畢。

Example 3.125. A Gray code for the case n = 3 is given by

000 Ñ 001 Ñ 011 Ñ 010 Ñ 110 Ñ 111 Ñ 101 Ñ 100 .

‚ Algorithm of the decomposition of multi-controlled (n+ 1)-qubit gates

Suppose that we are given matrix

R = blkdiag
(
Ra(α1), ¨ ¨ ¨ , Ra(αN)

)
for some unit vector a = (0, ay, az), where N = 2n.

1. Let tx1, x2, ¨ ¨ ¨ , xNu, where x1 = 0, be a reflected binary code (Gray code) for the list
of numbers t0, 1, ¨ ¨ ¨ , N ´ 1u. Define xN+1 = 0 and f : t1, ¨ ¨ ¨ , Nu Ñ t1, ¨ ¨ ¨nu by

f(j) is the location where the bit expression of xj and xj+1 differ (xN+1 ” 0)

which can be implemented in matlab® by

f(j) = find(double(xor(flip(de2bi(xj, n)), flip(de2bi(xj+1, n)))) == 1) .

Set Cj = CNOTf(j),n+1 for 1 ď j ď N .

122

2. Define a 2n ˆ 2n matrix M = [mij] by

mij = (´1)(i´1)‚xj

where the exponent (i´ 1) ‚ (xj) is the bitwise dot product (defined in (3.8)) of (i´ 1)

and xj (which can be implemented in matlab® by de2bi(i ´ 1, n) ˚ de2bi(xj, n)1). Solve

M


θ1
θ2
...
θN

 =


α1

α2
...
αN

 .

3. Define Rk = blkdiag
(
Ra(θk), ¨ ¨ ¨ , Ra(θk)
l jh n

N copies of Ra(θk)

)
. Then R = CNRNCN´1RN´1 ¨ ¨ ¨C1R1.

We note that in matlab® Rk can be formed by

Rk = kron(eye(N), Ra(θk)) .

Chapter 4

Simon’s Algorithm

Simon’s algorithm was the first quantum algorithm to show an exponential speed-up versus
the best classical algorithm in solving a specific problem. This inspired the quantum algo-
rithms based on the quantum Fourier transform, which is used in the most famous quantum
algorithm: Shor’s factoring algorithm.

4.1 Simon’s Problem
Let N = 2n, and identify the set t0, ¨ ¨ ¨ , N ´ 1u with t0, 1un. Let j ‘ s be the n-bit string
obtained by bitwise adding the n-bit strings j and s mod 2; that is,

j ‘ s =
(
(j1 ‘ s1)(j2 ‘ s2) ¨ ¨ ¨ (jn ‘ sn)

)
2

if j = (j1j2 ¨ ¨ ¨ jn)2 and s = (s1s2 ¨ ¨ ¨ sn)2 .

Simon’s problem:

‚ Formulation 1: For N = 2n, we are given x = (x0, ¨ ¨ ¨ , xN´1), with xi P t0, 1un, with
the property that there is some unknown nonzero s P t0, 1un such that xi = xj if and
only if (i = j or i = j ‘ s). Find s.

‚ Formulation 2: If f : t0, 1un Ñ t0, 1un is either an one-to-one or a two-to-one function
satisfying the property that there exists s P t0, 1un such that f(i) = f(j) if and only
if i = j or i = j ‘ s. Determine the class to which f belongs to.

Note that the input here are slightly different from before: the input x = tx0, ¨ ¨ ¨ , xN´1u

now has variables xi that themselves are n-bit strings, and one query gives such a string
completely |i0ny ÞÑ |ixiy.

123

124

4.2 The Quantum Algorithm
Simon’s algorithm starts out very similar to Deutsch-Jozsa: start in a state of 2n zero qubits
|0ny|0ny and apply Hadamard transforms to the first n qubits, giving

1
?
2n

ÿ

iPt0,1un

|iy|0ny .

At this point, the second n-qubit register still holds only zeroes. A query turns this into
1

?
2n

ÿ

iPt0,1un

|iy|xiy .

Now the algorithm measures the second n-qubit register in the computational basis; this
measurement is actually not necessary, but it facilitates analysis. The measurement outcome
will be some value xi and the first register will collapse to the superposition of the two indices
having that xi-value:

1
?
2
(|iy + |i ‘ sy)|xiy .

We will now ignore the second register and apply Hadamard transforms to the first n qubits.
Using Equation (2.9) and the fact that (i ‘ s) ‚ j = (i ‚ j) ‘ (s ‚ j) (which is a direct conse-
quence of (ik ‘ sk) ¨ jk = (ik ¨ jk)‘ sk ¨ jk) for all ik, sk, jk P t0, 1u), we can write the resulting
state as

1
?
2n+1

 ÿ

jPt0,1un

(´1)i‚ j|jy +
ÿ

jPt0,1un

(´1)(i‘s)‚ j|jy


=

1
?
2n+1

ÿ

jPt0,1un

(´1)i‚ j
(
1 + (´1)s‚ j

)
|jy .

Note that |jy has nonzero amplitude if s ‚ j = 0 mod 2. Measuring the state gives a
uniformly random element from the set tj | s ‚ j = 0 mod 2u. Accordingly, we get a linear
equation that gives information about s. We repeat this algorithm until we have obtained
n ´ 1 independent linear equations involving s. The solutions to these equations will be
0n and the correct s, which we can compute efficiently by a classical algorithm (Gaussian
elimination modulo 2). This can be done by means of a classical circuit of size roughly
O(n3).

Note that if the j’s you have generated at some point span a space of size 2k, for some
k ă n ´ 1, then the probability that your next run of the algorithm produces a j that is

125

linearly independent of the earlier ones, is (2n´2k)/2n ě 1/2. Hence an expected number of
O(n) runs of the algorithm suffices to find n´1 linearly independent j’s. Simon’s algorithm
thus finds s using an expected number of O(n) xi-queries and polynomially many other
operations.

|0ny Hbn

Qx (Q for “query”)
Hbn

|0ny

i i

0n xi

Figure 4.1: Quantum circuit for Simon’s algorithm

Example 4.1. Let us see the example of Simon’s algorithm for periodic function of 2 qubits
given by

f(x1, x2) = (x1 ‘ x2, x1 ‘ x2) @x1, x2 P t0, 1u .

The period s = (11)2, and the quantum circuit to solve the problem is:

|0y H H

|0y H H

|0y

|0y

Figure 4.2: Quantum circuit for Simon’s algorithm in this example

To check the four CNOT operations indeed provide the oracle Qf , we note that by
writing |xy = |x1x2y and |yy = |y1y|y2y, we have

CNOT2,4CNOT2,3CNOT1,4CNOT1,3|xy|yy

= CNOT2,4CNOT2,3CNOT1,4CNOT1,3|x1y|x2y|y1y|y2y

= CNOT2,4CNOT2,3CNOT1,4|x1y|x2y|x1 ‘ y1y|y2y

= CNOT2,4CNOT2,3|x1y|x2y|x1 ‘ y1y|x1 ‘ y2y

= CNOT2,4|x1y|x2y|x1 ‘ x2 ‘ y1y|x1 ‘ y2y

= |x1y|x2y|x1 ‘ x2 ‘ y1y|x1 ‘ x2 ‘ y2y = |xy|y ‘ f(x)y = Qf |xy|yy .

126

4.3 Classical Algorithms for Simon’s Problem
4.3.1 Upper bound

Let us first sketch a classical randomized algorithm that solves Simon’s problem using
O(

?
2n) queries, based on the so-called “birthday paradox”. Our algorithm will make T

randomly chosen distinct queries i1, ¨ ¨ ¨ , iT , for some T to be determined later. If there is a
collision among those queries (that is, xik = xiℓ for some k ‰ ℓ), then we are done, because
then we know ik = iℓ mod s, equivalently s = ik ‘ iℓ. How large should T be such that we
are likely to see a collision in case s ‰ 0n? (there will not be any collisions if s = 0n.) There
are CT

2 =
T (T ´ 1)

2
« T 2/2 pairs in our sequence that could be a collision, and since the

indices are chosen randomly, the probability for a fixed pair to form a collision is 1/(2n ´ 1).
Hence by linearity of expectation, the expected number of collisions in our sequence will
be roughly T 2/2n+1. If we choose T =

?
2n+1, we expect to have roughly 1 collision in our

sequence, which is good enough to find s. Of course, an expected value of 1 collision does
not mean that we will have at least one collision with high probability, but a slightly more
involved calculation shows the latter statement as well.

4.3.2 Lower bound

Simon proved that any classical randomized algorithm that finds s with high probabil-
ity needs to make Ω(

?
2n) queries, so the above classical algorithm is essentially optimal.

This was the first proven exponential separation between quantum algorithms and classi-
cal bounded-error algorithms (let us stress again that this does not prove an exponential
separation in the usual circuit model, because we are counting queries rather than ordinary
operations here). Simon’s algorithm inspired Shor to his factoring algorithm.

We will prove the classical lower bound for a decision version of Simon’s problem:

Given: input x = (x0, ¨ ¨ ¨ , xN´1), where N = 2n and xi P t0, 1un.

Promise: there exists s P t0, 1un such that xi = xj if and only if (i = j or i = j ‘ s).

Task: decide whether s = 0n.

Consider the input distribution µ that is defined as follows. With probability 1/2, x
is a uniformly random permutation of t0, 1un; this corresponds to the case s = 0n. With
probability 1/2, we pick a nonzero string s at random, and for each pair (i, i ‘ s), we pick

127

a unique value for xi = xi‘s at random. If there exists a randomized T -query algorithm
that achieves success probability ě 2/3 under this input distribution µ, then there also is
deterministic T -query algorithm that achieves success probability ě 2/3 under µ (because
the behavior of the randomized algorithm is an average over a number of deterministic
algorithms). Now consider a deterministic algorithm with error ď 1/3 under µ, that makes
T queries to x. We want to show that T = Ω(

?
2n).

First consider the case s = 0n. We can assume the algorithm never queries the same
point twice. Then the T outcomes of the queries are T distinct n-bit strings, and each
sequence of T strings is equally likely. Now consider the case s ‰ 0n. Suppose the algorithm
queries the indices i1, ¨ ¨ ¨ , iT (this sequence depends on x) and gets outputs xi1 , ¨ ¨ ¨ , xiT .
Call a sequence of queries i1, ¨ ¨ ¨ , iT good if it shows a collision (that is, xik = xiℓ for some
k ‰ ℓ), and bad otherwise. If the sequence of queries of the algorithm is good, then we can
find s, since ik ‘ iℓ = s. On the other hand, if the sequence is bad, then each sequence of T
distinct outcomes is equally likely - just as in the s = 0n case! We will now show that the
probability of the bad case is very close to 1 for small T .

If i1, ¨ ¨ ¨ , ik´1 is bad, then we have excluded at most Ck´1
2 possible values of s (namely

all values ij ‘ ij1 for all distinct j, j1 P [k ´ 1]), and all other values of s are equally likely.
The probability that the next query ik makes the sequence good, is the probability that
xik = xij for some j ă k, equivalently, that the set S = tik ‘ ij | j ă ku happens to contain
the string s. However, S has only k ´ 1 members, while there are 2n ´ 1 ´ Ck´1

2 equally
likely remaining possibilities for s. This means that the probability that the sequence is still
bad after query ik is made, is very close to 1. In formulas:

Pr[i1, ¨ ¨ ¨ , iT is bad] =
T
ź

k=2

Pr[i1, ¨ ¨ ¨ , ik is bad|i1, ¨ ¨ ¨ ik´1 is bad]

=
T
ź

k=2

(
1 ´

k ´ 1

2n ´ 1 ´ Ck´1
2

)
ě 1 ´

T
ÿ

k=2

k ´ 1

2n ´ 1 ´ Ck´1
2

.

Here we used the fact that (1 ´ a)(1 ´ b) ě 1 ´ (a+ b) if a, b ě 0.

Note that 2n ´ 1 ´ Ck´1
2 « 2n as long as k !

?
2n, and

T
ř

k=2

(k ´ 1) =
T (T ´ 1)

2
«

T 2/2. Hence we can approximate the last term in the formula by 1 ´ T 2/2n+1 if k !
?
2n. Accordingly, if T !

?
2n then with probability nearly 1 (probability taken over the

distribution µ) the algorithm’s sequence of queries is bad. If it gets a bad sequence, it cannot
“see” the difference between the s = 0n case and the s ‰ 0n case, since both cases result in

128

a uniformly random sequence of T distinct n-bit strings as answers to the T queries. This
shows that T has to be

?
2n in order to enable the algorithm to get a good sequence of

queries with high probability.

Chapter 5

The Fourier Transform

5.1 The Classical Discrete Fourier Transform

The Fourier transform occurs in many different versions throughout classical computing, in
areas ranging from signal-processing to data compression to complexity theory. For our
purposes, the Fourier transform is going to be an N ˆN unitary matrix, all of whose entries
have the same magnitude. For N = 2, it’s just our familiar Hadamard transform:

F2 = H =
1

?
2

[
1 1
1 ´1

]
.

Doing something similar in 3 dimensions is impossible with real numbers: we cannot give
three orthogonal vectors in t1,−1u3. However, using complex numbers allows us to define
the Fourier transform for any N . Let ωN = exp

(2πi
N

)
be an N -th root of unity. The rows

of the matrix will be indexed by j P t0, ¨ ¨ ¨ , N−1u and the columns by k P t0, ¨ ¨ ¨ , N−1u.
Define the (j, k)-entry (so we use the (0, 0)-entry to denote the usual (1, 1)-entry) of the
matrix FN by 1

?
N
ωjkN :

FN =
1

?
N


1 1 1 ¨ ¨ ¨ 1
1 ωN ω2

N ¨ ¨ ¨ ωN´1
N

1 ω2
N ω4

N ¨ ¨ ¨ ω
2(N´1)
N...

1 ωN´1
N ω

2(N´1)
N ¨ ¨ ¨ ω

(N´1)(N´1)
N

 .

129

130

Note that FN is a unitary matrix, since each column has norm 1, and any pair of columns
(say those indexed by k and k1) is orthogonal:

N´1
ÿ

j=0

1
?
N
ωjkN ¨

1
?
N
ωjk

1

N =
1

N

N´1
ÿ

j=0

ω
j(k1´k)
N =

"

1 if k1 = k ,
0 otherwise .

Since FN is unitary and symmetric, the inverse F´1
N = F ˚

N only differs from FN by having
minus signs in the exponent of the entries. For a vector v P RN , the vector pv = FNv is
called the discrete Fourier transform (DFT) of v. Doing the matrix-vector multiplication,

its entries are given by pvj =
1

?
N

N
ř

k=1

ωjkN vk.

5.2 The Fast Fourier Transform

The naive way of computing the Fourier transform pv = FNv of v P RN just does the matrix-
vector multiplication to compute all the entries of pv. This would take O(N) steps (additions
and multiplications) per entry, and O(N2) steps to compute the whole vector pv. However,
there is a more efficient way of computing pv. This algorithm is called the Fast Fourier
Transform (FFT, due to Cooley and Tukey in 1965), and takes only O(N log2N) steps.
This difference between the quadratic N2 steps and the near-linear N log2N is tremendously
important in practice when N is large, and is the main reason that Fourier transforms are
so widely used.

We will assume N = 2n, which is usually fine because we can add zeroes to our vector
to make its dimension a power of 2 (but similar FFTs can be given also directly for most N
that are not a power of 2). The key to the FFT is to rewrite the entries of pv as follows:

pvj =
1

?
N

N´1
ÿ

k=0

ωjkN vk =
1

?
N

(
ÿ

k even
ωjkN vk +

ÿ

k odd
ωjkN vk

)
=

1
?
2

(1
a

N/2

ÿ

k even
ω
jk/2
N/2 vk +

ωjN
a

N/2

ÿ

k odd
ω
j(k´1)/2
N/2 vk

)
.

Note that we have rewritten the entries of the N -dimensional discrete Fourier transform
pv in terms of two N

2
-dimensional discrete Fourier transforms, one of the even-numbered

entries of v, and one of the odd-numbered entries of v. This suggests a recursive procedure
for computing pv: first separately compute the Fourier transform zveven of the N

2
-dimensional

131

vector of even-numbered entries of v and the discrete Fourier transform yvodd of the N

2
-

dimensional vector of odd-numbered entries of v, and then compute the N entries using

pvj =
1

?
2

[
(zveven)j + ωjN(yvodd)j

]
@ 0 ď j ď

N

2
´ 1 ,

pvj+N
2
=

1
?
2

[
(zveven)j ´ ωjN(yvodd)j

]
@ 0 ď j ď

N

2
´ 1 .

The computation time T (N) it takes to implement FN this way can be written recursively as
T (N) = 2T

(N
2

)
+ 2N , because we need to compute two N

2
-dimensional Fourier transforms

and do 2N additional operations (additions and multiplications) to compute pv. This works
out to time T (N) = O(N log2N), as promised. Similarly, we have an equally efficient
algorithm for the inverse discrete Fourier transform F´1

N = F ˚
N , whose entries are 1

?
N
ω´jk
N .

5.3 Application: Multiplying Two Polynomials
Suppose we are given two real-valued polynomials p and q, each of degree at most d:

p(x) =
d
ÿ

j=0

ajx
j and q(x) =

d
ÿ

k=0

bkx
k .

We would like to compute the product of these two polynomials

p(x)q(x) =
(d
ÿ

j=0

ajx
j
)(d

ÿ

k=0

bkx
k
)
=

2d
ÿ

ℓ=0

(ℓ
ÿ

j=0

ajbℓ´j

)
l jh n

cℓ

xℓ .

Clearly, each coefficient cℓ by itself takes (2ℓ + 1) steps (additions and multiplications) to
compute, which suggests an algorithm for computing the coefficients of p ¨q that takes O(d2)

steps. However, using the fast Fourier transform we can do this in O(d log2 d) steps, as
follows.

The convolution of two vectors a, b P RN is a vector a ˙ b P RN whose ℓ-th entry is
defined by

(a ˙ b)ℓ =
1

?
N

N´1
ÿ

j=0

ajb(ℓ−j) mod N .

Let us set N = 2d + 1 (the number of nonzero coefficients of p ¨ q) and make the (d + 1)-
dimensional vectors of coefficients a and b N-dimensional by adding d zeroes. Then the

132

coefficients of the polynomial p ¨ q are proportional to the entries of the convolution: cℓ =
?
N(a ˙ b)ℓ. It is easy to show that the Fourier coefficients of the convolution of a and b

are the products of the Fourier coefficients of a and b: for every ℓ P t0, ..., N−1u we have
(za ˙ b)ℓ = (pa .˚pb)ℓ:

(za ˙ b)ℓ =
1

?
N

N´1
ÿ

k=0

ωℓkN (a ˙ b)k =
1

N

N´1
ÿ

k=0

N´1
ÿ

j=0

ωℓkN ajb(k´j) mod N

=
1

N

N´1
ÿ

j=0

ωℓjNaj

N´1
ÿ

k=0

ω
ℓ(k´j)
N ajb(k´j) mod N

=
1

N

N´1
ÿ

j=0

ωℓjNaj

N´1
ÿ

k=0

ωℓkN ajbk mod N

=
(1

?
N

N´1
ÿ

j=0

ωℓjNaj

)(1
?
N

N´1
ÿ

k=0

ωℓkN ajbk mod N

)
= (pa .˚pb)ℓ ,

where we have used the periodicity to conclude that
N´1
ÿ

k=0

ω
ℓ(k´j)
N ajb(k´j) mod N =

N´1
ÿ

k=0

ωℓkN ajbk mod N .

This immediately suggests an algorithm for computing the vector of coefficients cℓ: apply
the FFT to a and b to get pa and pb, multiply those two vectors entrywise to get pa .˚pb, apply
the inverse FFT to get a˙ b, and finally multiply a˙ b with

?
N to get the vector c of the

coefficients of p ¨ q. Since the FFTs and their inverse take O(N log2N) steps, and pointwise
multiplication of two N -dimensional vectors takes O(N) steps, this whole algorithm takes
O(N log2N) = O(d log2 d) steps.

Note that if two numbers ad ¨ ¨ ¨ a1a0 and bd ¨ ¨ ¨ b1b0 are given in decimal notation, then
we can interpret the digits as coefficients of polynomials p and q, respectively, and the
two numbers will be p(10) and q(10). Their product is the evaluation of the product-
polynomial p ¨ q at the point x = 10. This suggests that we can use the above procedure
(for fast multiplication of polynomials) to multiply two numbers in O(d log2 d) steps, which
would be a lot faster than the standard O(d2) algorithm for multiplication that one learns
in primary school. However, in this case we have to be careful since the steps of the
above algorithm are themselves multiplications between numbers, which we cannot count
at unit cost anymore if our goal is to implement a multiplication between numbers! Still, it
turns out that implementing this idea carefully allows one to multiply two d-digit numbers

133

in O(d log2 d log2 log2 d) elementary operations. This is known as the Schönhage-Strassen
algorithm. We will skip the details.

5.4 The Quantum Fourier Transform
Since FN is anNˆN unitary matrix, we can interpret it as a quantum operation, mapping an
N -dimensional vector of amplitudes to another N -dimensional vector of amplitudes. This
is called the quantum Fourier transform (QFT). In case N = 2n (which is the only case
we will care about), this will be an n-qubit unitary. Notice carefully that this quantum
operation does something different from the classical Fourier transform: in the classical case
we are given a vector v, written on a piece of paper so to say, and we compute the vector
pv = FNv, and also write the result on a piece of paper. In the quantum case, we are working
on quantum states; these are vectors of amplitudes, but we do NOT have those written
down anywhere – they only exist as the amplitudes in a superposition. We will see below
that the QFT can be implemented by a quantum circuit using O(n2) elementary gates.
This is exponentially faster than even the FFT (which takes O(N log2N) = O(2nn) steps),
but it achieves something different: computing the QFT will NOT give us the entries of
the Fourier transform written down on a piece of paper, but only as the amplitudes of the
resulting state.

Definition 5.1. The N -dimnesional quantum Fourier transform FN , where N = 2n, is a
linear map on the n-qubit space

␣

|0y, |1y, ¨ ¨ ¨ , |N ´ 1y
(

satisfying that

FN |ky =
1

?
N

N´1
ÿ

j=0

ωjkN |jy @ |ky = |k1k2 ¨ ¨ ¨ kny = |k1y b ¨ ¨ ¨ b |kny ,

where again ωN = exp
(2πi
N

)
.

Since exp
(2πijk

2n

)
= exp

(
i
n
ř

ℓ=1

2πkjℓ
2ℓ

)
, using (3.17) we find that

FN |ky =
1

?
N

N´1
ÿ

j=0

e
2πijk
2n |jy =

n
â

ℓ=1

1
?
2

(
|0y + e

2πik

2ℓ |1y

)
(5.1)

Using the convection 0.b1b2 ¨ ¨ ¨ bm =
m
ř

ℓ=1

bℓ2
´ℓ for b = b1b2 ¨ ¨ ¨ bm P t0, 1um (for example,

134

0.101 = 1 ¨
1

2
+ 0 ¨

1

4
+ 1 ¨

1

8
=

5

8
), by the fact that e2πi = 1 we have

exp
(2πik

2ℓ

)
= exp

(
2πi

n
ÿ

j=1

kj2
n´j´ℓ

)
= exp

(
2πi

n
ÿ

j=n´ℓ+1

kj2
n´j´ℓ

)
= exp

(
2πi

ℓ
ÿ

m=1

kn´ℓ+m2
´m
)
= exp

(
2πi0.kn´ℓ+1kn´ℓ+2 ¨ ¨ ¨ kn

)
so that (5.1) implies that

FN |ky =
n
â

ℓ=1

1
?
2

(
|0y + e2πi0.kn´ℓ+1¨¨¨kn |1y

)
. (5.2)

In the following, we will describe the efficient circuit for the n-qubit QFT. The elementary
gates we will allow ourselves are Hadamards and controlled-Rs gates, where

Rs =

[
1 0
0 e2πi/2

s

]
.

Note that R1 = Z =

[
1 0
0 ´�1

]
, R2 =

[
1 0
0 i

]
, and

Rs|ky = e2πi
k
2s |kℓy @ k P t0, 1u .

For large s, e2πi/2s is close to 1 and hence the Rs-gate is close to the identity-gate I. We
could implement Rs-gates using Hadamards and controlled-Rs gates for s = 1, 2, 3, but for
simplicity we will just treat each Rs as an elementary gate.

Example 5.2. In this example illustrate how to construct the quantum circuit of F8. Using
(5.2),

F8|k1k2k3y =
1

?
2

(
|0y + e2πi0.k3 |1y

)
b

1
?
2

(
|0y + e2πi0.k2k3 |1y

)
b

1
?
2

(
|0y + e2πi0.k1k2k3 |1y

)
.

1. To prepare the first qubit of the desired state F8|k1k2k3y, just apply a Hadamard to
|k3y since

H|k3y =
1

?
2

(
|0y + (´1)k3 |1y

)
=

1
?
2

(
|0y + e2πi0.k3 |1y

)
.

2. To prepare the second qubit of the desired state, we first apply a Hadamard to |k2y to
obtain 1

?
2

(
|0y+e2πi0.k2 |1y

)
, and then conditioned on k3 (before we apply the Hadamard

to |k3y) apply R2: by applying R2 it multiplies |1y with a phase e2πi0.0k3 , producing
the correct qubit 1

?
2

(
|0y + e2πi0.k2k3 |1y

)
.

135

3. To prepare the third qubit of the desired state, we apply a Hadamard to |k1y, apply
R2 conditioned on k2 and R3 conditioned k3. This produces the correct qubit 1

?
2

(
|0y+

e2πi0.k1k2k3 |1y
)
.

Note that the order of the output is wrong: the first qubit should be the third and vice
versa. So the final step is just to swap qubits 1 and 3. Therefore, F8 can be achieved by the
following quantum circuit:

|k1y H R2 R3

|k2y H R2

|k3y H

Figure 5.1: QFT for 3-qubits

The general case works analogously: starting with ℓ = 1, we apply a Hadamard to |kℓy

and then “rotate in” the additional phases required, conditioned on the values of the later
bits kℓ+1, ¨ ¨ ¨ , kn.

Figure 5.2: The ℓ-th block of QFT for n-qubits, where |ψy is a (ℓ´ 1) qubit quantum state

Some swap gates at the end then put the qubits in the right order, and we have the full
quantum circuit of QFT for n-qubits below:

136

.

.

.

.

|k1y H R2 Rn´1 Rn

|k2y H Rn´2 Rn´1

|kn´1y H R2

|kny H

Figure 5.3: The quantum circuit of QFT for n-qubits (finally one should apply an order
reverse operator)

Since the circuit involves n qubits, and at most n gates are applied to each qubit, the
overall circuit uses at most n2 gates. In fact, many of those gates are phase gates Rs

with s " logn, which are very close to the identity and hence do not do much anyway.
We can actually omit those from the circuit, keeping only O(logn) gates per qubit and
O(n logn) gates overall. Intuitively, the overall error caused by these omissions will be
small (a homework exercise asks you to make this precise). Finally, note that by inverting
the circuit (that is, reversing the order of the gates and taking the adjoint U∗ of each gate U)
we obtain an equally efficient circuit for the inverse quantum Fourier transform F´1

N = F ˚
N .

5.5 Application: phase estimation

Suppose we can apply a unitary U and we are given an eigenvector |ψy of U corresponding
to an unknown eigenvalue λ (that is, U |ψy = λ|ψy for some unknown λ P C), and we would
like to compute or at least approximate the λ. Since U is unitary, λ must have magnitude 1,
so we can write it as λ = e2πiϕ for some real number ϕ P [0, 1); the only thing that matters
is this phase ϕ. Suppose for simplicity that we know that ϕ = 0.ϕ1ϕ2 ¨ ¨ ¨ϕn can be written
exactly with n bits of precision. Then here’s the algorithm for phase estimation:

1. Start with |0ny|ψy.

2. For N = 2n, apply FN to the first n qubits to get 1
?
N

N´1
ř

j=0

|jy|ψy (in fact, Hnb I would

have the same effect).

137

3. Apply the map |jy|ψy ÞÑ |jyU j|ψy. In other words, apply U to the second register for
a number of times given by the first register.

4. Apply the inverse Fourier transform F´1
N to the first n qubits and measure the result.

Note that after step 3, the first n qubits are in state

1
?
N

N´1
ÿ

j=0

e2πiϕj |jy ,

hence the inverse quantum Fourier transform is going to give us |2nϕy = |ϕ1 ¨ ¨ ¨ϕny with
probability 1. In case ϕ cannot be written exactly with n bits of precision, one can show
that this procedure still (with high probability) spits out a good n-bit approximation to ϕ.
We’ll omit the calculation.

Definition 5.3. Let U P U(2m) be an 2m ˆ 2m unitary matrix and let |ψy be one of
the eigenvector of U with corresponding eigenvalue e2πiθ. The Quantum Phase Estimation
algorithm, abbreviated QPE, takes the inputs the m-qubit quantum gate for U and the
state |0ny|ψy and returns the state |rθy|ψy, where rθ denotes a binary approximation to 2nθ

and the n subscript denotes it has been truncated to n digits. In notation, with [¨] denoting
the Gauss/floor function,

QPE(U, |0ny|ψy) = |rθy|ψy , rθ =
[
2nθ
]
.

We will use |θyn to denote |rθy if rθ =
[
2nθ
]
.

Chapter 6

Shor’s Factoring Algorithm

Suppose that N is the product of two unknown prime numbers p, q. Then a classical way of
factoring N is to run a routine check to see which natural number not greater than

?
N is

a factor of N . The worse case scenario is to try this division
?
N times in order to find the

correct factors. The current encryption system is designed based on the fact that “it is much
easier to compute the product of two prime numbers than to factor a number which is the
product of two prime numbers is difficult”. In the following, we quickly review the current
encryption system and the mathematics behind it, and study the most famous quantum
algorithm to factor large numbers, the Shor algorithm.

6.1 RSA Encryption
RSA is an asymmetric encryption (非對稱式加密) technique that uses two different keys
as public and private keys to perform the encryption and decryption. The public key is
represented by the integers n and e, and the private key by the integer d. A basic principle
behind RSA is to find three very large positive integers e, d, and n, such that with modular
exponentiation all messages m P N with 0 ď m ă n satisfies

(me)d ” m (mod n)

and that knowing e and n, or even m, it can be extremely difficult to find d.

6.1.1 Mathematical foundation

Definition 6.1 (Greatest common divisor). Let a and b be non-zero integers. We say the
integer d is the greatest common divisor (gcd) of a and b, and write d = gcd(a, b), if

138

139

1. d is a common divisor of a and b.

2. every common divisor c of a and b is not greater than d.

Theorem 6.2. Let a and b be positive integers with a ď b. Suppose that b = aq0 + r1,
a = r1q1 + r2, rj´1 = rjqj + rj+1 for 2 ď j ď k, where 0 = rk+1 ă rk ă ¨ ¨ ¨ ă r2 ă r1 ă a

and qj P N for all 0 ď j ď k.

1. gcd(a, b) = rk, the last non-zero remainder in the list.

2. If tsjuj= and ttjuj= are defined by

sj =

$

&

%

1 if j = ´1 ,

0 if j = 0 ,

sj´2 ´ qj´1sj´1 if j ě 1 ,

and tj =

$

&

%

0 if j = ´1 ,

1 if j = 0 ,

tj´2 ´ qj´1tj´1 if j ě 1 ,

then
atj + bsj = rj @ 1 ď j ď k .

Proof. Let a and b be positive integers with a ď b. By the Division Algorithm, there exists
positive integer q1 and non-negative integer r1 such that b = aq0 + r1 and 0 ď r1 ă a. If
r1 = 0, the lists terminate; otherwise, for 0 ă r1 ă a, there exists positive integer q1 and
non-negative integer r2 such that a = r1q1+r2 and 0 ď r2 ă r1. If r2 = 0, the lists terminate;
otherwise, for 0 ă r2 ă r1, there exists positive integer q2 and non-negative integer r3 such
that r1 = r2q2 + r3 and 0 ď r3 ă r2.

Continuing in this fashion, we obtain a strictly decreasing sequence of non-negative
integers r1, r2, r3, ¨ ¨ ¨ . This lists must end, so there is an integer k such that rk+1 = 0.
Therefore, with r´1 and r0 denoting b and a respectively, we have

r´1 ě r0 ą r1 ą r2 ą ¨ ¨ ¨ ą rk ą rk+1 = 0 ,

rj´1 = rjqj + rj+1 for all 0 ď j ď k .

1. We now show that rk = d ” gcd(a, b).

(a) The remainder rk divides rk´1 since rk´1 = rkqk. Therefore, by the fact that
rj´1 = rjqj + rj+1 for all 0 ď j ď k, we find that rk divides rj´1 for all 0 ď j ď k;
thus rk divides a and b.

(b) On the other hand, d divides r1 since r1 = b ´ aq0. Therefore, by the fact that
rj+1 = rj´1 ´ rjqj for all 0 ď j ď k, we find that d divides rk for all 0 ď j ď k.

140

By (a), rk is a common divisor of a and b. By (b), the greatest common divisor of a
and b must divide rk; thus we conclude that rk = gcd(a, b).

2. To see that for all 1 ď j ď k,
atj + bsj = rj , (6.1)

we note that

(a) (6.1) holds for the case k = 1 since (s1, t1) = (1,´q0) and b = aq0 + r1.

(b) (6.1) holds for the case k = 2 since (s2, t2) = (´q1, 1 + q0q1) and

at2 + bs2 = a(1 + q0q1) ´ bq1 = a ´ q1(b ´ aq0) = r0 ´ q1r1 = r2 .

(c) Suppose that (6.1) holds for k = ℓ, ℓ ´ 1, ℓ ě 2. Then

atℓ+1 + bsℓ+1 = a(tℓ´1 ´ qℓtℓ) + b(sℓ´1 ´ qℓsℓ) = atℓ´1 + bsℓ´1 ´ qℓ(atℓ + bsℓ)

= rℓ´1 ´ qℓrℓ = rℓ+1 .

By induction, we conclude that (6.1) holds for 1 ď j ď k. ˝

Remark 6.3. Let a, b P N with a ď b. The algorithm to compute gcd(a, b) given in part 1
of Theorem 6.2 is caleed Euclid’s Algorithm (輾轉相除法), and the algorithm to compute
x, y P Z so that ax + by = gcd(a, b) given in part 2 of Theorem 6.2 is called Extended
Euclid’s Algorithm.

Example 6.4. We compute gcd(32, 12) using Euclid’s algorithm as follows:

32 = 12 ˆ 2 + 8 , 12 = 8 ˆ 1 + 4 , 8 = 4 ˆ 2 + 0 .

Therefore, 4 = gcd(12, 32). Moreover, by working backward,

4 = 12 ´ 8 ˆ 1 = 12 ´ (32 ´ 12 ˆ 2) ˆ 1 = 12 ˆ 3 + 32 ˆ (´1) .

One can also obtain the “coefficients” 3 and ´1 using Extended Euclid’s Algorithm:

j rj qj sj tj
-1 32 1 0
0 12 2 0 1
1 8 1 1 ´2
2 4 2 ´1 3

141

Theorem 6.5. Let a and b be non-zero integers. The gcd of a and b is the smallest positive
linear combination of a and b; that is,

gcd(a, b) = min
␣

am+ bn
ˇ

ˇ am+ bn ą 0 ,m, n P Z
(

.

Proof. Let d = am + bn be the smallest positive linear combination of a and b. We show
that d satisfies (1) and (2) in the definition of the greatest common divisor.

1. First we show that d divides a. By the Division Algorithm, there exist integers q
and r such that a = dq + r, where 0 ď r ă d. Then

r = a ´ dq = a ´ (am+ bn)q = a(1 ´ m) + b(´nq) ;

thus r is a linear combination of a and b. Since 0 ď r ă d and d is the smallest
positive linear combination, we must have r = 0. Therefore, a = dq; thus d divides a.
Similarly, d divides b (replacing a by b in the argument above); thus d is a common
divisor of a and b.

2. Next we show that all common divisors of a and b is not greater than d.
Let c be a common divisor of a and b. Then c divides d since d = am+ bn. Therefore,
c ď d.

By (1) and (2), we find that d = gcd(a, b). ˝

Definition 6.6 (Euler function). Let n P N. The function φ : N Ñ N defined by

φ(n) = #
␣

k P N
ˇ

ˇ 1 ď k ď n and gcd(k, n) = 1
(

is called the Euler (phi) function. In other words, the Euler function counts the positive
integers up to a given integer n that are coprime to n.

Proposition 6.7. For each n P N,

φ(n) = n
ź

p|n

(
1 ´

1

p

)
.

In particular, by writing n =
r
ś

j=1

p
kj
j = pk11 p

k2
2 ¨ ¨ ¨ pkrr , where p1, ¨ ¨ ¨ , pr are distinct prime

numbers and k1, ¨ ¨ ¨ , kr P N,

φ(n) =
r
ź

j=1

p
kj´1
j (pj ´ 1) .

142

Corollary 6.8. Let m,n P N be such that gcd(m,n) = 1. Then φ(mn) = φ(m)φ(n).

Definition 6.9. Given a P Z and n P N, a modulo n (abbreviated as a mod n) is the
remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
In other words, a mod n outputs r if a = qn + r for some q P Z and r P t0, 1, ¨ ¨ ¨ , n ´ 1u.
For a, b P Z, the notation a ” b (mod n) denotes the fact that n|(a´ b); that is, there exists
m P Z such that a ´ b = mn.

We note that by the definition, a ” b (mod n) if and only if a ´ b ” 0 (mod n).

Definition 6.10. The addition ‘ on Zn is defined by

c = a ‘ b if and only if (a+ b) mod n outputs c ,

and the multiplication d on Zn is defined by

c = a d b if and only if (a ¨ b) mod n outputs c ,

where + and ¨ are the usual addition and multiplication on Z.

Proposition 6.11. (Zn,‘) is a group; that is,

1. Zn is closed under addition ‘;

2. there exists an additive identity 0 (that is, a ‘ 0 = a for all a P Zn), and

3. every element in Zn has an additive inverse (that is, for each a P Zn there exists b P Zn
such that a ‘ b = 0).

Proposition 6.12. Let n ě 2 be an integer, and a, b P Z satisfy a ” b (mod n). Then
gcd(a, n) = 1 if and only if gcd(b, n) = 1.

Proof. It suffices to shows that if gcd(a, n) ‰ 1, then gcd(b, n) ‰ 1.
Suppose that gcd(a, n) = p ą 1. Then a = pq1 and n = pq2 for some q1, q2 P Z. Since

a ” b (mod n), there exists m P Z such that a ´ b = mn. Therefore, b = a ´ mn =

pq1 ´ pq2m = p(q1 ´ q2m) which shows that gcd(b, n) ě p. ˝

Proposition 6.12 shows that if a P Z satisfies gcd(a, n) = 1, then (a mod n) is coprime
to n.

143

Proposition 6.13. Let a, b, c, d P Z and n P N be such that a ” c (mod n) and b ” d (mod
n). Then a ¨ b ” c ¨ d (mod n).

Proposition 6.14 (Cancellation law in Zn). Let a, n P N be such that gcd(a, n) = 1. If
a ¨ b ” a ¨ c (mod n), then b ” c (mod n).

Theorem 6.15. The integers coprime to n from the set t0, 1, ¨ ¨ ¨ , n−1u of n non-negative
integers form a group under multiplication modulo n. In other words, let S be a subset of
Zn consisting of numbers coprime to n; that is, S =

␣

k P N
ˇ

ˇ 1 ď k ď n and gcd(k, n) = 1
(

.
Then (S,d) is a group; that is,

1. S is closed under multiplication d;

2. there exists an multiplicative identity 1 (that is, a d 1 = a for all a P S), and

3. every element in S has an multiplicative inverse element (that is, for each a P S there
exists b P S such that a d b = 1).

Proof. It suffices to prove 1 and 3.

1. Let a, b P S. Then a ¨ b is coprime to n; thus Proposition 6.12 implies that a ¨ b mod
n is coprime to n as well. Therefore, a d b P S.

3. Let a P S. Then the set adS ”
␣

ad s
ˇ

ˇ s P S
(

is a subset of S. Moreover, if s1, s2 P S

satisfying that a d s1 = a d s2; that is, a ¨ s1 ” a ¨ s2 (mod n), then s1 = s2; thus

#(a d S) = φ(n). This fact shows that there exists s P S such that a d s = 1. ˝

Definition 6.16. The multiplicative group of integers modulo n (given in Theorem 6.15)
is denoted by (Z˚

n,d).

Theorem 6.17. Let n P N and a P Z˚
n. If a ¨ x+ n ¨ y = 1 for some x, y P Z, then

a´1 ” x (mod n) ,

where a´1 denotes the number in Z˚
n satisfying a d a´1 = a´1 d a = 1.

Theorem 6.18 (Euler). Let a, n P N be such that gcd(a, n) = 1. Then aφ(n) ” 1 (mod n).

144

Proof. Let aZ˚
n be the set aZ˚

n ” ta ¨ s
ˇ

ˇ s P Z˚
n

(

. Then the set (aZ˚
n mod n) ”

␣

(a ¨

s) mod n
ˇ

ˇ s P Z˚
n

(

is identical to Z˚
n. Therefore, Proposition 6.13 implies that

ź

kPZ˚
n

k ”
ź

kPaZ˚
n

k (mod n) .

Since
ś

kPaZ˚
n

k = aφ(n)
ś

kPZ˚
n

k and
ś

kPZ˚
n

k is coprime to n, by the cancellation law for Zn (Propo-

sition 6.14) we find that aφ(n) ” 1 (mod n). ˝

Corollary 6.19 (Fermat little theorem). Let p be a prime number, and a P N satisfy
gcd(a, p) = 1. Then ap´1 ” 1 (mod p).

6.1.2 Encryption based on factoring large numbers

The RSA algorithm involves four steps: key generation, key distribution, encryption, and
decryption.

Key generation

The keys for the RSA algorithm are generated in the following way:

1. Choose two distinct prime numbers p and q.

(a) For security purposes, the integers p and q should be chosen at random and should
be similar in magnitude but differ in length by a few digits to make factoring
harder. Prime integers can be efficiently found using a primality test.

(b) p and q are kept secret.

2. Compute n = pq.

(a) n is used as the modulus for both the public and private keys. Its length, usually
expressed in bits, is the key length.

(b) n is released as part of the public key.

3. Compute φ(n), where φ is the Euler function. By Proposition 6.7, φ(n) = (p−1)(q−1).
φ(n) is kept secret.

4. Choose an integer e such that 1 ă e ă φ(n) and gcd(e, φ(n)) = 1; that is, e and φ(n)

are coprime.

145

(a) e having a short bit-length and small Hamming weight results in more efficient
encryption - the most commonly chosen value for e is 216 + 1 = 65537. The
smallest (and fastest) possible value for e is 3, but such a small value for e has
been shown to be less secure in some settings.

(b) e is released as part of the public key.

5. Determine d as d ” e´1 (mod φ(n)); that is, d is the modular multiplicative inverse
of e modulo φ(n).

(a) This means: solve for d the equation d ¨ e ” 1 (mod φ(n)); d can be computed
efficiently by using the extended Euclidean algorithm, since, thanks to e and φ(n)
being coprime, said equation is a form of Bézout’s identity, where d is one of the
coefficients.

(b) d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The
private key consists of the private (or decryption) exponent d, which must be kept secret. p,
q, and φ(n) must also be kept secret because they can be used to calculate d. In fact, they
can all be discarded after d has been computed.

Note: The authors of the original RSA paper carry out the key generation by choosing d
and then computing e as the modular multiplicative inverse of d modulo φ(n), whereas most
current implementations of RSA, such as those following PKCS#1, do the reverse (choose
e and compute d). Since the chosen key can be small, whereas the computed key normally
is not, the RSA paper’s algorithm optimizes decryption compared to encryption, while the
modern algorithm optimizes encryption instead.

Remark 6.20. In modern RSA implementation the use of Euler function φ is replaced by
Carmichael’s totient function λ defined by

λ(n) = min
␣

k P N
ˇ

ˇ ak ” 1 (mod n) for all a P Z˚
n

(

.

If n = pq with prime numbers p and q, then λ(n) = lcm(p ´ 1, q ´ 1), the least common
multiple of p ´ 1 and q ´ 1.

Remark 6.21. If both n and φ(n) are known, then two primes p and q satisfying

n = pq , φ(n) = (p ´ 1)(q ´ 1)

can be solved easily since p and q are zeros of x2 +
[
φ(n) ´ (n+ 1)

]
x+ n = 0.

146

Key distribution

Suppose that Bob wants to send information to Alice. If they decide to use RSA, Bob
must know Alice’s public key to encrypt the message, and Alice must use her private key
to decrypt the message. To enable Bob to send his encrypted messages, Alice transmits her
public key (n, e) to Bob via a reliable, but not necessarily secret, route. Alice’s private key
(d) is never distributed.

Encryption

After Bob obtains Alice’s public key, he can send a message M to Alice.
To do it, he first turns M (strictly speaking, the un-padded plaintext) into an integer

m (strictly speaking, the padded plaintext), such that 0 ď m ă n by using an agreed-upon
reversible protocol known as a padding scheme. He then computes the ciphertext c, using
Alice’s public key e, corresponding to

c ” me (mod n) .

This can be done reasonably quickly, even for very large numbers, using modular exponen-
tiation. Bob then transmits c to Alice. Note that at least nine values of m will yield a
ciphertext c equal to m, but this is very unlikely to occur in practice.

Decryption

Alice can recover m from c by using her private key exponent d by computing

cd ” (me)d ” m (mod n) .

Given m, she can recover the original message M by reversing the padding scheme.

Example 6.22. Here is an toy example of RSA encryption and decryption.

1. Choose two prime numbers p = 11 and q = 31.

2. Compute n = pq = 341.

3. Compute φ(n) = (p ´ 1)(q ´ 1) = 300 / (λ(n) = lcm(10, 30) = 30).

4. Choose the encryption key e = 17 so that 1 ă e ă φ(n) and gcd(e, φ(n)) = 1 /
(1 ă e ă λ(n) and gcd(e, λ(n)) = 1).

147

5. Compute the decryption key d by Euclid’s algorithm (and Theorem 6.17):

300 = 17 ˆ 17 + 11 30 = 17 ˆ 1 + 13

17 = 11 ˆ 1 + 6 17 = 13 ˆ 1 + 4

11 = 6 ˆ 1 + 5 13 = 4 ˆ 3 + 1

6 = 5 ˆ 1 + 1 4 = 1 ˆ 4

5 = 1 ˆ 5 + 0

which implies that 300 ˆ (´3) + 17 ˆ 53 = 1 (30 ˆ 4 + 17 ˆ (´7) = 1); thus d = 53

(d ” ´7 (mod 30) or d = 23).

j rj qj sj tj
-1 300 1 0
0 17 17 0 1
1 11 1 1 ´17
2 6 1 ´1 18
3 5 1 2 ´35
4 1 5 ´3 53

j rj qj sj tj
-1 30 1 0
0 17 1 0 1
1 13 1 1 ´1
2 4 3 ´1 2
3 1 4 4 ´7

Therefore, to encrypt m = 30, we raise to the power of 17 and obtain the encrypted message:

3017 ” 123 (mod 341) .

To decrypt the encrypted message, we raise it to the power of 53 (23) and obtain that

12353 ” (1233)17 ¨ 1232 ” 3017 ¨ 125 ” 123 ¨ 125 ” 30 (mod 341)

(12323 ” (1233)7 ¨ 1232 ” 307 ¨ 125 ” 123 ¨ 125 ” 30 (mod 341)) .

6.2 Reduction from Factoring to Period-finding
The crucial observation of Shor was that there is an efficient quantum algorithm for the
problem of period-finding and that factoring can be reduced to this, in the sense that an
efficient algorithm for period-finding implies an efficient algorithm for factoring. We first
explain the reduction. Suppose we want to find factors of the composite number N ą 1.
We may assume N is odd and not a prime power, since those cases can easily be filtered
out by a classical algorithm. Now randomly choose some integer x P t2, ¨ ¨ ¨ , N ´ 1u which

148

is coprime to N . If x is not coprime to N , then the greatest common divisor of x and N is
a nontrivial factor of N , so then we are already done. From now on consider x and N are
coprime, so x is an element of the multiplicative group Z˚

N . Consider the sequence

1 = x0 mod N , x1 mod N , x2 mod N , ¨ ¨ ¨

This sequence will cycle after a while: there is a least 0 ă r ď N such that xr ” 1 (mod
N). The smallest such number r is called the period of the sequence (a.k.a. the order of
the element x in the group (Z˚

N ,d)). If r is even, then

xr ” 1 (mod N) ô (xr/2)2 ” 1 (mod N) ô (xr/2 + 1)(xr/2 ´ 1) ” 0 (mod N)
ô (xr/2 + 1)(xr/2 ´ 1) = kN for some k P N.

Because both xr/2 + 1 ą 0 and xr/2 ´ 1 ą 0 (due to the fact that x ą 1), we must have
k ‰ 0. Hence xr/2 + 1 or xr/2 ´ 1 will share a factor with N . Note that xr/2 ‰ 1 mod
N for otherwise r/2 is a period of f , a contradict to the assumption that r is the smallest
period. In other words, gcd(xr/2 ´ 1, N) ‰ N . It is still possible that gcd(xr/2 ´ 1, N) = 1

and this is equivalent to that gcd(xr/2 + 1, N) = N . Therefore, we are able to factor N if
gcd(xr/2 + 1, N) ă N .

Assuming that N is odd and not a prime power, it can be shown (in Theorem 6.37) that
with probability not less than 1/2, the period r is even and xr/2 + 1 and xr/2 ´ 1 are not
multiples of N .

Accordingly, with high probability we can obtain an even period r so that gcd(xr/2+1, N)

is a non-trivial factor of N . If we are unlucky we might have chosen an x that does not give
a factor (which we can detect efficiently), but trying a few different random x gives a high
probability of finding a factor.

The factorization algorithm above is summarized as follows. Let N be an odd natural
number N that has at least two distinct prime factors.

Step 1: Choose x P t2, ¨ ¨ ¨ , N ´ 1u and compute gcd(x,N).

(a) If gcd(x,N) ą 1, then gcd(x,N) is a non-trivial factor of N and we are done.

(b) If gcd(x,N) = 1, then goto Step 2.

Step 2: Determine the period r of the function f (a) = x a mod N .

(a) If r is odd, goto Step 1.

149

(b) If r is even, goto Step 3.

Step 3: Determine gcd(x r/2 + 1, N).

(a) If gcd(x r/2 + 1, N) = N , then goto Step 1.

(b) If gcd(x r/2 + 1, N) ă N , then gcd(x r/2 + 1, N) is a non-trivial factor of N and
we are done.

Thus the problem of factoring reduces to finding the period r of the function given by
modular exponentiation f(a) = xa mod N . In general, the period-finding problem can be
stated as follows:
The period-finding problem: We are given some function f : N Ñ t0, 1, ¨ ¨ ¨ , N´1u with
the property that there is some unknown r P t0, 1, ¨ ¨ ¨ , N ´ 1u such that f(a) = f(b) if and
only if a ” b mod r. The goal is to find r.

A naive algorithm to find the period is to compute f(0), f(1), f(2), ¨ ¨ ¨ until we encounter
the value f(0) for the second time. The input at which this happens is the period r that we
are trying to find. The problem with this approach is that r could be huge, polynomial in N .
To be efficient, we would like a runtime that is polynomial in logN , since that is the bitsize of
the inputs to f . It is generally believed that classical computers cannot solve period-finding
problems efficiently. We will show below how we can solve this problem efficiently on a
quantum computer, using only O(log logN) evaluations of f and O(log logN) quantum
Fourier transforms. An evaluation of f can be viewed as analogous to the application
of a query in the previous algorithms. Even a somewhat more general kind of period-
finding problems can be solved by Shor’s algorithm with very few f -evaluations, whereas
any classical bounded-error algorithm would need to evaluate the function Ω(N1/3/

?
logN)

times in order to find the period.

6.3 Shor’s Period-finding Algorithm

Before proceeding to the discussion of Shor’s algorithm, let us point out that the period-
finding problem in the previous section can be related to the phase estimation problem in
the following sense: given x P Z˚

N , the (unitary) map

U |yy = |x d yy ” |x ¨ y mod Ny

150

has an eigenvector

|ψsy ”
1

?
r

r´1
ÿ

k=0

exp
(

´
2πisk

r

)
|xk mod Ny

for each 0 ď s ă r since

U |ψsy =
1

?
r

r´1
ÿ

k=0

exp
(

´
2πisk

r

)
U |xk mod Ny =

1
?
r

r´1
ÿ

k=0

exp
(

´
2πisk

r

)
|xk+1 mod Ny

=
1

?
r

exp
(2πis

r

) r´1
ÿ

k=0

exp
(

´
2πis(k + 1)

r

)
|xk+1 mod Ny

=
1

?
r

exp
(2πis

r

) r
ÿ

ℓ=1

exp
(

´
2πisℓ

r

)
|xℓ mod Ny

=
1

?
r

exp
(2πis

r

) r´1
ÿ

ℓ=0

exp
(

´
2πisℓ

r

)
|xℓ mod Ny = exp

(2πis
r

)
|ψsy .

Therefore, the phase estimation algorithm introduced in Section 5.5 can be applied to find
r as long as the eigenvector |ψsy is known (even though we do not know |ψsy for s ‰ 0).

Now we will show how Shor’s algorithm finds the period r of the function f , given a
“black-box” that maps |ay|0Ky ÞÑ |ay|f(a)y. We can always efficiently pick some q = 2L such
that N2 ă q ď 2N2. Then we can implement the Fourier transform QFTq using O((logN)2)

gates. Let Of denote the unitary that maps |ay|0Ky ÞÑ |ay|f(a)y, where the first register
consists of L qubits, and the second of K = [log2N] + 1 qubits.

Register A
start with |0Ly

|0y

QFT
or

HbL

Of

QFT...

|0y

Register B
start with |0Ky

|0y
...

|0y

Figure 6.1: Shor’s period-finding algorithm

Shor’s period-finding algorithm is illustrated in Figure 6.1. Start with |ψ0y = |0Ly|0Ky.

151

Apply the QFT (or just L Hadamard gates) to the first register to build the uniform super-
position

|ψ1y = (HbL b IK)|ψ0y =
1

?
q

q´1
ÿ

a=0

|ay|0Ky ,

where IK denotes the identity map on the second register. The second register still consists
of zeroes. Now use the “black-box” to compute f(a) in quantum parallel:

|ψ2y = Of |ψ1y =
1

?
q

q´1
ÿ

a=0

|ay|f(a)y .

Next we apply the quantum Fourier transform QFT to the first register to obtain the
quantum state |ψ3y = (Fq b IK)|ψ2y. Finally, we measure the first register and obtain a
number b and wish to find the period of f based on this observation.

Some of the measurement b obtained by Shor’s algorithm above are useless. The mea-
surement b becomes useful for us to determine the period r if b belongs to the set

E =
!

b P N Y t0u

ˇ

ˇ

ˇ
0 ď b ď q ´ 1 and

ˇ

ˇ

b

q
´

c

r

ˇ

ˇ ă
1

2r2
for some c P Z˚

r

)

,

where we recall that Z˚
r is the collection of numbers from t1, ¨ ¨ ¨ , r ´ 1u that are coprime

to r so that #Z˚
r = φ(r). We note that E is indeed unknown to us (since r is unknown to

us) but it exists and is a non-empty set. We will show in Section 6.5 that the probability of
obtaining b P E by Shor’s algorithm is not less than 1

10 lnL
. This implies that if we apply

Shor’s algorithm k times, the probability of obtaining no b P E is less than
(
1 ´

1

10 lnL

)k
which is quite small when k is large.

Suppose that we apply Shor’s algorithm and obtain one such b P E. Then there exists
c P Z˚

r such that
ˇ

ˇ

b

q
´

c

r

ˇ

ˇ ă
1

2r2
. We note that in this inequality we only know b and q (so

is the number x = b/q), but both c and r are unknown to us. Even though c and r are
unknown to us, the fact that c P Z˚

r implies that c

r
is an irreducible fraction（最簡分數）.

Therefore, if there is a fast algorithm to find all irreducible fractions n

m
satisfying

ˇ

ˇ

ˇ
x ´

n

m

ˇ

ˇ

ˇ
ď

1

2m2
and m ă N , (6.2)

we can check whether the denominators m of all such irreducible fractions satisfying m ă N

is the period of f . In Section 6.4 an efficient algorithm based on continuous fractions is
proposed to find all irreducible fractions n

m
satisfying (6.2).

152

Shor’s period-finding algorithm: Let f : NY t0u Ñ NY t0u be a periodic function with
period r satisfying 19 ď r ă 2L/2 for some L P N such that f is injective within one period
and is bounded by 2K ´ 1.

Step 1: Prepare the oracle Uf (or Of) satisfying

Uf |ay|by = |ay|b ‘ f(a)y @ a P t0, 1uL, b P t0, 1uK .

Step 2: Measure the first register of the quantum state

(F2L b IK)Uf (HbL b IK)(|0Ly b |0Ky) .

and obtain b.

Step 3: Use continuous fraction algorithm to find all irreducible fractions n

m
satisfying

ˇ

ˇ

b

2L
´

n

m

ˇ

ˇ ă
1

2m2
and m ă 2L/2 .

(a) If one of such denominator m is the period of f , we are done.

(b) If none of these denominators m is the period of f , then b R E and goto Step 1.

6.4 Continued fractions
A continued fraction, or simply CF, is a real number of the form

a0 +
1

a1 +
1

a2 +
1

¨ ¨ ¨

.

The continued fraction above is denote by [a0; a1, a2, ¨ ¨ ¨] (here the number of ai’s can be
finite or infinite), and the ai’s are called the partial quotients. We assume these to be positive
natural numbers. [a0; ¨ ¨ ¨ , an] is the n-th convergent of the continued fraction [a0; a1, a2, ¨ ¨ ¨],
and can be simply computed by the following iterative scheme: if

p0 = a0, p1 = a1a0 + 1, pn = anpn´1 + pn´2 ,

q0 = 1, q1 = a1, qn = anqn´1 + qn´2 .
(6.3)

then [a0; ¨ ¨ ¨ , an], in its lowest terms, is pn
qn

; that is,

[a0; ¨ ¨ ¨ , an] =
pn
qn
, gcd(pn, qn) = 1 .

153

Note that qn increases at least exponentially with n since qn ě 2qn´2. Given a real number
x, the following “algorithm” gives a continued fraction expansion of x:

a0 ” [x] , x1 ” 1/(x ´ a0) ,

a1 ” [x1] , x2 ” 1/(x1 ´ a1) ,

a2 ” [x2] , x3 ” 1/(x2 ´ a2) ,

...

Informally, we just take the integer part of the number as the partial quotient and continue
with the inverse of the decimal part of the number.

Example 6.23. Let x =
?
2. Then a0 = 1 and ak = 2 for all k P N. To see this, we note

that x1 =
1

?
2 ´ 1

=
?
2 + 1 so we have a1 = 2. This then shows that

x2 =
1

x1 ´ a1
=

1
?
2 + 1 ´ 2

=
?
2 + 1

and as a consequence a2 = 2. Repeating this process, we find that xk =
?
2 + 1 and ak = 2

for all k P N.
Using (6.3), we obtain that

n 1 2 3 4 5 6 7 8 9
pn 3 7 17 41 99 239 577 1393 3363
qn 2 5 12 29 70 169 408 985 2378

ˇ

ˇx ´
pn
qn

ˇ

ˇ 0.0858 0.0142 0.0025 4.2e-4 7.2e-5 1.2e-5 2.1e-6 3.6e-7 6.3e-8

Theorem 6.24. For an x P R, the sequence taju constructed from the algorithm above
terminates if and only if x is rational.

The convergence of the CF approximate x follows from the fact that

if x = [a0; ¨ ¨ ¨ , an], then
ˇ

ˇ

ˇ
x ´

pn
qn

ˇ

ˇ

ˇ
ď

1

q2n
.

Recall that qn increases exponentially with n, so this convergence is quite fast. Moreover,
pn/qn provides the best approximation of x among all fractions with denominator not greater
than qn:

if n ě 1, q ď qn, p
q

‰
pn
qn

, then
ˇ

ˇ

ˇ
x ´

pn
qn

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ
x ´

p

q

ˇ

ˇ

ˇ
.

The following theorem shows how one accomplish Step 3 in Shor’s period-finding algo-
rithm.

154

Theorem 6.25. Let b, q P N be given and let [a0; a1, ¨ ¨ ¨ , an] be the continued fraction of
their quotient; that is

b

q
= [a0; a1, ¨ ¨ ¨ , an] .

If c, r P N are such that
ˇ

ˇ

b

q
´

c

r

ˇ

ˇ ă
1

2r2
,

then c

r
is a convergent of the continued fraction of b

q
; that is, there exists a j P t0, 1, ¨ ¨ ¨ , nu

such that
c

r
= [a0; a1, ¨ ¨ ¨ , aj] =

pj
qj

where pj and qj are as constructed by (6.3).

6.5 Efficiency of Shor’s Algorithm
6.5.1 Shor’s period-finding algorithm

Shor’s algorithm can be applied to find the period of a more general class of periodic
functions.

Theorem 6.26. Let f : N Y t0u Ñ N Y t0u be a periodic function with period r satisfying
19 ď r ă 2L/2 for some L P N such that f is injective within one period and is bounded by
2K ´ 1, and Uf be an (L+K)-qubit quantum gate satisfying

Uf |ay|by = |ay|b ‘ f(a)y , @ a P t0, 1uL, b P t0, 1uK .

Then each application of Shor’s algorithm provides the period r with a probability of at least
1

10 lnL
.

Proof. Let M = max
␣

f(a)
ˇ

ˇ 0 ď a ď 2L ´ 1
(

and K P N with M ă 2K , and H be the usual
qubit Hilbert space with basis t|0y, |1yu. Set |ψ0y = |0Ly b |0Ky. Then with IK denoting the
identity map on HbK ,

|ψ1y ” (HbL b IK)|ψ0y =
1

?
2L

2L´1
ÿ

a=0

|ay b |0Ky .

Applying Uf to |ψ1y, we find that

|ψ2y = Uf |ψ1y =
1

?
2L

2L´1
ÿ

a=0

|ay b |f(a)y .

155

Define m ”
[2L ´ 1

r

]
, the largest integer smaller than 2L ´ 1

r
, and R ” (2L´1) mod r. Then

|ψ2y =
1

?
2L

m´1
ÿ

j=0

r´1
ÿ

s=0

|jr + sy b |f(s)y +
R
ÿ

s=0

|mr + sy b |f(s)y .

Define ms = m ´ 1(R,8)(s); that is, ms = m if s ď R and ms = m ´ 1 if s ą R. Then

|ψ2y =
1

?
2L

r´1
ÿ

s=0

ms
ÿ

j=0

|jr + sy b |f(s)y .

Next we apply the quantum Fourier transform to the first L qubits of |ψ2y and obtain that

|ψ3y ” (F2L b IB)|ψ2y =
1

?
2L

r´1
ÿ

s=0

ms
ÿ

j=0

(F2L |jr + sy) b |f(s)y

=
1

2L

r´1
ÿ

s=0

ms
ÿ

j=0

2L´1
ÿ

b=0

exp
(
2πi

(jr + s)b

2L

)
|by b |f(s)y

Now we measure the input register, and let P (b) denote the probability of observing |by

upon measurement. Let E be the collection of b P t0, 1, ¨ ¨ ¨ , 2L ´ 1u such that there exists
c P t0, ¨ ¨ ¨ , r ´ 1u satisfying

ˇ

ˇ

b

2L
´

c

r

ˇ

ˇ ă
1

2r2
and gcd(c, r) = 1; that is,

E =
!

b P N Y t0u

ˇ

ˇ

ˇ
0 ď b ď 2L ´ 1 and

ˇ

ˇ

b

2L
´

c

r

ˇ

ˇ ă
1

2r2
for some c P Z˚

r

)

.

We note for each b P t0, ¨ ¨ ¨ , 2L ´ 1u,

P (b) =
1

22L

r´1
ÿ

s=0

ˇ

ˇ

ˇ

ms
ÿ

j=0

exp
(
2πi

(jr + s)b

2L

)ˇ
ˇ

ˇ

2

=
1

22L

r´1
ÿ

s=0

[ms
ÿ

j1,j2=0

exp
(
2πi

(j1r + s)b

2L

)
exp

(́
2πi

(j2r + s)b

2L

)]
=

1

22L

r´1
ÿ

s=0

[ms
ÿ

j1,j2=0

exp
(
2πi

j1rb

2L

)
exp

(́
2πi

j2rb

2L

)]
=

1

22L

r´1
ÿ

s=0

ˇ

ˇ

ˇ

[ms
ÿ

j=0

exp
(
2πi

jrb

2L

)ˇ
ˇ

ˇ

2

.

Since
d
ÿ

j=0

aj =

$

&

%

d+ 1 if a = 1 ,

1 ´ ad+1

1 ´ a
if a ‰ 1 ,

156

we obtain that

ms
ÿ

j=0

exp
(
2πi

jrb

2L

)
=

$

’

’

&

’

’

%

ms + 1 if rb

2L
P N Y t0u ,

1 ´ e
2πi

(ms+1)rb

2L

1 ´ e
2πi rb

2L

if rb

2L
R N Y t0u ;

thus

P (b) =

$

’

’

’

’

&

’

’

’

’

%

1

22L

r´1
ÿ

s=0

(ms + 1)2 if rb

2L
P N Y t0u ,

1

22L

r´1
ÿ

s=0

ˇ

ˇ

ˇ

1 ´ e
2πi

(ms+1)rb

2L

1 ´ e
2πi rb

2L

ˇ

ˇ

ˇ

2

if rb

2L
R N Y t0u .

Define

B =
!

b P N Y t0u

ˇ

ˇ

ˇ
0 ď b ď 2L ´ 1 and

ˇ

ˇrb ´ c2L
ˇ

ˇ ď
r

2
for some (unique) c P Z˚

r

)

.

We note that the fact that r ă 2L/2 implies that if b P B,
ˇ

ˇ

ˇ

b

2L
´
cb
r

ˇ

ˇ

ˇ
=

1

r2L
ˇ

ˇrb ´ cb2
L
ˇ

ˇ ď
r

2
¨

1

r2L
=

1

2 ¨ 2L
ă

1

2r2
.

In other words, B Ď E. Let b P B.

1. The case rb

2L
P N Y t0u: In this case

P (b) =
1

22L

r´1
ÿ

s=0

(ms + 1)2 =
1

22L

[R
ÿ

s=0

(m+ 1)2 +
r´1
ÿ

s=R+1

m2
]

=
1

22L

[
(R + 1)(m+ 1)2 + (r ´ 1 ´ R)m2

]
ě

1

22L

[
(R + 1)m2 + (r ´ 1 ´ R)m2

]
=

1

r

(rm
2L

)2
.

Recall that m =
[
2L ´ 1

r

]
. By the fact that r ă 2

L
2 and

r ´ 1 ě (2L ´ 1) mod r ě 2L ´ 1 ´ mr ,

we find that mr

2L
ě 1 ´

r

2L
ą 1 ´

1
?
2L

. Therefore,

P (b) ě
1

r

(
1 ´

1
?
2L

)2
ą

1

r

(
1 ´

1

2L/2´1

)
.

157

2. The case rb

2L
R N Y t0u: Suppose that c P t0, 1, ¨ ¨ ¨ , r ´ 1u satisfies

ˇ

ˇrb ´ c2L
ˇ

ˇ ď
r

2
. (6.4)

Then

P (b) =
1

22L

r´1
ÿ

s=0

ˇ

ˇ

ˇ

1 ´ e
2πi

(ms+1)rb

2L

1 ´ e
2πi rb

2L

ˇ

ˇ

ˇ

2

=
1

22L

r´1
ÿ

s=0

ˇ

ˇ

ˇ

1 ´ e
2πi

(ms+1)(rb´c2L)

2L

1 ´ e
2πi rb´c2L

2L

ˇ

ˇ

ˇ

2

=
1

22L

r´1
ÿ

s=0

sin2 π rb´c2
L

2L
(ms + 1)

sin2 π rb´c2
L

2L

,

where we have used the identity |1 ´ eiθ| = 2
ˇ

ˇ sin θ

2

ˇ

ˇ to conclude the last equality. Let

α = π
rb ´ c2L

2L
. Then

|α| ď
π

2L
¨
r

2
ă

π

2
L
2
+1

!
π

2
.

Within this range, the function β ÞÑ
sin2 β(ms + 1)

sin2 β
cannot attain its minimum in the

interior of the interval and we have

sin2 π rb´c2
L

2L
(ms + 1)

sin2 π rb´c2
L

2L

=
sin2 α(ms + 1)

sin2 α
ě

sin2 πr
2L+1 (ms + 1)

sin2 πr
2L+1

@ |α| ă
π

2
.

Note that the fact that m ď ms + 1 ď m+ 1 and R = (2L ´ 1) mod r imply that

r(ms + 1)

2L
ě
mr

2L
=
mr +R + 1

2L
´
R + 1

2L
= 1 ´

R + 1

2L
ě 1 ´

r

2L

and
r(ms + 1)

2L
ď
r(m+ 1)

2L
=
mr +R + 1

2L
+
r ´ R ´ 1

2L
ď 1 +

r

2L
.

Therefore, the inequalities sin2 x ď x2 and cosx ě 1 ´
x2

2
for all for all x P R show

that

sin2 π rb´c2
L

2L
(ms + 1)

sin2 π rb´c2
L

2L

ě
sin2 πr(ms+1)

2L+1

sin2 πr
2L+1

ě

(2L+1

πr

)2
sin2 πr(ms + 1)

2L+1

ě

(2L+1

πr

)2
sin2

[π
2

(
1 ´

r

2L

)]
ě

(2L+1

πr

)2[
1 ´

1

2

(π
2

r

2L

)2]2
ě

22L+2

π2r2

[
1 ´

(π
2

1
?
2L

)2]
=

22L+2

π2r2

(
1 ´

π2

2L+2

)
;

158

thus

P (b) ě
1

22L

r´1
ÿ

s=0

22L+2

π2r2

(
1 ´

π2

2L+2

)
=

r

22L
22L+2

π2r2

(
1 ´

π2

2L+2

)
=

4

π2r

(
1 ´

π2

2L+2

)
.

For L ě 4, we have
4

π2r

(
1 ´

π2

2L+2

)
ď

1

r

(
1 ´

1

2L/2´1

)
;

thus
Pmin ”

4

π2r

(
1 ´

π2

2L+2

)
ď P (b) if b P B and L ě 4 .

Now we find a lower bound for P(E), the probability of measuring an element of E. By
the definition of B for any b P B there exists c P Z˚

r satisfying (6.4). Moreover, if c1, c2 P Z˚
r

satisfy
ˇ

ˇrb ´ c12
L
ˇ

ˇ ď
r

2
and

ˇ

ˇrb ´ c22
L
ˇ

ˇ ď
r

2
, then

ˇ

ˇc1 ´ c2
ˇ

ˇ ď

ˇ

ˇ

ˇ
c1 ´

rb

2L

ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ
c2 ´

rb

2L

ˇ

ˇ

ˇ
ď

1

2L

(
ˇ

ˇrb ´ c12
L
ˇ

ˇ+
ˇ

ˇrb ´ c22
L
ˇ

ˇ

)
ď

r

2L
ă 1 .

Therefore, for any b P B there exists a unique c = cb P Z˚
r satisfying (6.4). On the other hand,

by the fact that r ă 2L/2, every c P Z˚
r corresponds to a unique b = bc P t0, 1, ¨ ¨ ¨ , 2L ´ 1u

such that (6.4) holds: if b1 and b2 both satisfy (6.4), then |b1 ´ b2| = 1 and

b1 + b2
2

r = c2L

which, by the fact that gcd(b1 + b2, 2
L+1) = 1, implies that 2L+1|r, a contradiction.

Figure 6.2: The distribution of br and c2L for various b and c.

Therefore, there is an one-to-one correspondence between Z˚
r and B; thus if L ě 4,

P(E) =
ÿ

bPE

P (b) ě
ÿ

bPB

P (b) ě
ÿ

bPB

4

π2r

(
1 ´

π2

2L+2

)
=

#B
r

4

π2

(
1 ´

π2

2L+2

)
=

#Z˚
r

r

4

π2

(
1 ´

π2

2L+2

)
=
φ(r)

r

4

π2

(
1 ´

π2

2L+2

)
.

159

A famous result in number theory implies that
r

φ(r)
ă 4 ln ln r @ r ě 19 ;

thus if r ě 19 (so that L ě 9),

P(E) ě
4

π2

(
1 ´

π2

211

) 1

4 ln ln r ą
1

10 lnL .

Once we measure a b P E, we make use of continuous fractions to find the period r. ˝

6.5.2 The period of f(a) = xa mod N is most likely even

In this sub-section we focus on proving the following

Theorem 6.27. Let N P N be odd with prime factorization N =
J
ś

j=1

p
νj
j , where p1, ¨ ¨ ¨ ,

p
J

are distinct prime numbers. For a randomly chosen b P Z˚
N , the probability of that

r ” min
␣

r P N
ˇ

ˇ br = 1mod N
(

is even and br/2 + 1 mod N ‰ 0 is at least 1 ´
1

2J´1
.

In the application of the factoring algorithm proposed in the previous sections, J = 2 so
that the probability of that for a randomly chosen b P Z˚

N the number gcd(br/2 + 1, N) is a
prime factor of N is at least 1/2.

Let N P N. Recall that Z˚
N consists of numbers from t1, 2, ¨ ¨ ¨ , N ´ 1u that is coprime

to N ; that is,
Z˚
N =

␣

n P N
ˇ

ˇ 1 ď n ď N ´ 1 and gcd(n,N) = 1
(

.

The number of elements in Z˚
N = φ(N), where φ is the Euler function (given in Definition

6.6).

Definition 6.28. Let b,N P N with gcd(b,N) = 1. The order of b in Z˚
N , denoted by

ordN(b), is the period of the function f(x) = bx ´ 1 mod N . In other words,

ordN(b) = min
␣

r P N
ˇ

ˇ br = 1 mod N
(

.

If ordN(b) = φ(N), then b is called a primitive root modulo N .

Theorem 6.29. Let a, b,N P N with gcd(a,N) = 1 = gcd(b,N). Then the following
statements hold.

1. For all k P N, ak = 1 mod N if and only if ordN(a)|k.

160

2. ordN(a)|φ(N); that is, ordN(a) is a factor of φ(N).

3. If ordN(a) and ordN(b) are coprime, then ordN(ab) = ordN(a)ordN(b).

4. If a is a primitive root modulo N ; that is, ordN(a) = φ(N), then we also have

(a) Z˚
N =

␣

aj mod N
ˇ

ˇ 1 ď j ď φ(N)
(

.

(b) If b = aj mod N for some j P N, then

ordN(b) = ordN(aj) =
φ(N)

gcd(j, φ(N))
. (6.5)

Proof. Let a, b,N P N with gcd(a,N) = 1 = gcd(b,N).

1. (“ñ”) Let k P N satisfying ak = 1 mod N . Then k ě ordN(a). Let c = k mod
ordN(a); that is, there exists q P N such that k = q ¨ ordN(a) + c for some c P

t0, 1, ¨ ¨ ¨ , ordN(a) ´ 1u. Then

1 = ak mod N = aq¨ordN (a)+c mod N = ac mod N ;

thus by the definition of the order we must have c = 0. Therefore, ordN(a)|k.

(“ð”) Suppose that ordN(a)|k. Then k = q ¨ ordN(a) for some q P N. Therefore,

ak mod N = aq¨ordN (a) mod N = 1 .

2. By Theorem 6.18, we know that aφ(N) = 1 mod N ; thus part 2 follows from part 1.

3. By Proposition 6.13, the rule of multiplication in Z˚
N , we find that

(ab)ordN (a)ordN (b) mod N = aordN (a)bordN (b) mod N = 1 ;

thus part 1 implies that
ordN(ab)|ordN(a)ordN(b) . (6.6)

On the other hand, by the fact that bordN (b)ordN (ab) = 1 mod N ,

aordN (b)ordN (ab) mod N = aordN (b)ordN (ab)bordN (b)ordN (ab) mod N

= (ab)ordN (b)ordN (ab) mod N = 1 .

161

Therefore, part 1 shows that

ordN(a)|ordN(b)ordN(ab) .

By the assumption that ordN(a) and ordN(b) are coprime, we must have ordN(a)|ordN(ab).
Similarly, we also have ordN(b)|ordN(ab). Therefore,

ordN(a)ordN(b)|ordN(ab)

which, together with (6.6), shows the desired result.

4. Suppose that ordN(a) = φ(N).

(a) First we note that Theorem 6.15 implies that
␣

aj mod N
ˇ

ˇ 1 ď j ď φ(N)
(

Ď Z˚
N .

It then suffices to show that

#
␣

aj mod N
ˇ

ˇ 1 ď j ď φ(N)
(

= φ(N) . (6.7)

Let i, j P N with 1 ď i ď j ď φ(N), and suppose that ai = aj mod N . Then
aj´i = 1 mod N . Therefore, part 1 shows that ordN(a)|(j ´ i). Since ordN(a) =
φ(N) and 1 ď i ď j ď φ(N), we must have i = j; thus (6.7) holds.

(b) We first establish the first “=” of (6.5); that is, if b = aj mod N , then ordN(b) =
ordN(aj). To see that, we note that the identity

1 = bordN (b) mod N = (aj mod N)ordN (b) mod N = (aj)ordN (b) mod N

shows that ordN(aj) ď ordN(b), while the identity

1 = (aj)ordN (aj) mod N = (aj mod N)ordN (aj) mod N = bordN (aj) mod N

shows that ordN(b) ď ordN(aj).
Next we focus on the second “=” of (6.5). We note that part 2 implies that
there exists m1 P N such that m1 ¨ ordN(aj) = φ(N); thus it suffices to show that
m1 = gcd(j, φ(N)).
We remark that m1 must satisfy m1|φ(N). Moreover, since

1 = (aj)ordN (aj) mod N = aj¨ordN (aj) mod N ,

162

we have ordN(a)|j ¨ ordN(aj). By the assumption that ordN(a) = φ(N), there
exists m2 P N such that m2 ¨ φ(N) = j ¨ ordN(aj). Therefore, j = m1m2. In
particular, m1|j; thus the fact that m1|φ(N) further shows that

m1|gcd(j, φ(N)) .

Suppose the contrary that m1 ă pm ” gcd(j, φ(N)). Then

pr ”
φ(N)

pm
ă
φ(N)

m1

= ordN(aj) . (6.8)

On the other hand, the fact that pm|j shows that

(aj)pr mod N = (aj)
φ(N)
xm mod N =

(
aφ(N)

) j
xm mod N

=
(
aφ(N) mod N

) j
xm mod N = 1 .

Thus, we conclude from part 1 that ordN(a
j)|pr , a contradiction to (6.8). ˝

Lemma 6.30. Let p be a prime, k P NY t0u, and f0, f1, ¨ ¨ ¨ , fk be integers such that p ∤ fk.

If f is a polynomial given by f(x) =
k
ř

j=0

fjx
j, then either

1. f has at most k distinct zeros modulo p in Z˚
p; that is,

#
␣

x P Z˚
p

ˇ

ˇ f(x) = 0 mod p
(

ď k

or

2. f is the zero-polynomial modulo p; that is, f(x) = 0 mod p for all x P Z (or Z˚
p).

Proof. We show this by induction in the degree of the polynomial, which we start at k = 0:
if f(x) = f0 ‰ 0 such that p ∤ f0, then it follows that f0 ‰ 0 mod p, and there is no x P Z
with f(x) = 0 mod p. If f0 = 0, then f is the zero-polynomial.

Suppose then the claim holds for all polynomials of degree up to k−1 and f is a poly-
nomial of degree k. If f has fewer than k zeros modulo p in Z˚

p , the claim holds already.
Suppose that f has at least k zeros modulo p, and n1, n2, ¨ ¨ ¨ , nk P Z˚

p are distinct zeros
of f modulo p (there may be more zeros of f modulo p, but we randomly pick k distinct
zeros). Then

g(x) ” f(x) ´ fk

k
ź

j=1

(x ´ nj) =
k´1
ÿ

ℓ=0

gℓx
ℓ

163

is a polynomial of degree not exceeding k ´ 1. Set m = max
␣

ℓ P t0, 1, ¨ ¨ ¨ , k ´ 1u
ˇ

ˇp ∤ gℓ
(

,

and define rg(x) =
m
ř

ℓ=0

gℓx
ℓ. Then for x P Z,

rg(x) mod p =
m
ÿ

ℓ=0

gℓx
ℓ mod p =

k´1
ÿ

ℓ=0

gℓx
ℓ mod p = g(x) mod p.

Moreover, for 1 ď j ď k we have g(nj) = f(nj) = 0 mod p. Therefore, rg has at least k zeros
modulo p; thus by the induction assumption rg must be the zero polynomial. This shows
that g is also the zero polynomial. By the definition of g,

f(x) = fk

k
ź

j=1

(x ´ nj) mod p @x P Z.

Suppose that z is a zero of f modulo p. Then by the fact that p ∤ fk, the cancellation law
for Zp implies that z ´ nj = 0 mod p for some 1 ď j ď k. ˝

Lemma 6.31. Let p be prime, d a natural number satisfying d|(p−1) and let h be the
polynomial h(x) = xd ´ 1. Then there exist exactly d distinct numbers n1, n2, ¨ ¨ ¨ , nd in Z˚

p

satisfying h(nj) = 0 mod p.

Proof. Let k P N be such that p−1 = dk. Define f(x) =
k´1
ř

ℓ=0

xdℓ and g = hf . Then

g(x) = (xd ´ 1)
k´1
ÿ

ℓ=0

xdℓ = xkd ´ 1 = xp´1 ´ 1.

Therefore, g(x) = 0 mod p for all x P Z˚
p . The cancellation law in Zp further implies that

for all x P Z˚
p , either h(x) = 0 mod p or f(x) = 0 mod p.

Since h(p´ 1) = p´ 2 mod p and f (1) = k, h and f are not zero polynomials. By the fact
that the leading coefficient of f and h are both 1 (and p ∤ 1), Lemma 6.30 implies that the
polynomial h has at most d and the polynomial f has at most d(k−1) zeros modulo p in
Z˚
p . Denoting the number of zeros modulo p in t1, ¨ ¨ ¨ p−1u of the polynomials g, h and f

by Ng, Nh and Nf , we have

dk = Ng ď Nh +Nf ď d+ d(k−1) = dk.

Therefore, exactly d(k−1) elements in Z˚
p are zeros of f modulo p, and exactly d elements

in Z˚
p are zeros of h modulo p. ˝

164

Theorem 6.32. For every odd prime p there exists at least one primitive root a modulo p;
that is, a natural number a such that

ordp(a) = min
␣

r P N
ˇ

ˇ ar = 1 mod p
(

= φ(p) = p ´ 1 .

Proof. For a prime factor q of p ´ 1, let kq be the unique number satisfying qkq |(p−1) but
qkq+1 ∤ (p ´ 1). We first prove that for each prime factor q of p ´ 1 there exists a = aq P Z˚

p

such that ordp(aq) = qkq .
Let q be a prime factor of p−1. By Lemma 6.31 we know that the polynomial h(x) ”

xq
kq −1 has exactly qkq zeros modulo p in Z˚

p . Let aq be one of these zeros, then aqkqq = 1 mod
p so it follows that ordp(aq)|qkq . If this zero aq of h has the additional property ordp(aq)|qj

for some j P N with j ă kq, then ordp(aq)|qkq−1 holds. Then

aq
kq´1

q = 1 mod p .

Hence, aq P Z˚
p is a zero modulo p of the polynomial f(x) ” xq

kq−1−1. By Lemma 6.31,
there are exactly qkq−1 of these. Of the qkq zeros modulo p in Z˚

p of h at most qkq−1 can be
zeros of f as well. This means that of the qkq zeros aq of h at most qkq−1 such aq satisfy in
addition ordp(aq)|qj with j ă kq. Therefore, there remain qkq−qkq−1 zeros aq P t1, ¨ ¨ ¨ , p−1u

that satisfy
ordp(aq)|qkq and ordp(aq) ∤ qj @ j ă kq . (6.9)

Since q is assumed prime, we conclude that there are qkq−qkq−1 numbers aq P t1, 2, ¨ ¨ ¨ , p´1u

satisfying qkq = ordp(aq). This establishes the first statement.
Let q1, q2, ¨ ¨ ¨ , qℓ be distinct prime factors of p´1. Rewrite kqj as kj and let a1, a2, ¨ ¨ ¨ , aℓ

be one particular number in t1, 2, ¨ ¨ ¨ , p´ 1u satisfying ordp(aj) = q
kj
j for 1 ď j ď ℓ. Define

a =
ℓ
ś

j=1

aj. Then a is a primitive root modulo p since

ordp(a) =
ℓ
ź

j=1

ordp(aj)

which can be shown inductively using part 3 of Theorem 6.29. ˝

Lemma 6.33. Let p be an odd prime and a be a natural number satisfying

gcd(a, p) = 1 and aφ(p)mod p2 ‰ 1 .

Then for all k P N, aφ(pk) mod pk+1 ‰ 1.

165

Proof. We first note that if k P N, by the fact that gcd(a, pk) = 1 the Euler Theorem
(Theorem 6.18) implies that

aφ(p
k) mod pk = 1 ;

thus there exists nk P N such that

aφ(p
k) = 1 + nkp

k .

Let D =
␣

k P N
ˇ

ˇ aφ(p
k) modpk+1 ‰ 1

(

. By assumption, 1 P D. Suppose that k P D.
Then aφ(p

k) ‰ 1 +mpk+1 for all m P N. Therefore, p ∤ nk. By Proposition 6.7,

φ(pk+1) = pk(p ´ 1) = pφ(pk) ;

thus

aφ(p
k+1) = apφ(p

k) = (aφ(p
k))p = (1 + nkp

k)p = 1 + nkp
k+1 +

p
ÿ

ℓ=2

Cp
ℓ n

ℓ
kp
kℓ .

Therefore, by the fact that p ∤ nk, we find that

aφ(p
k+1) mod pk+2 = (1 + nkp

k+1) mod pk+2 ‰ 1 .

This shows that k + 1 P D. The lemma is then concluded by induction. ˝

Theorem 6.34. Let p be an odd prime and a be a primitive root modulo p. Then for all
k P N either ordpk(a) = φ(pk) or ordpk(a+p) = φ(pk); that is, either a or a+p is a primitive
root modulo pk.

Proof. Let a be a primitive root modulo p.

Case 1 - aφ(p) mod p2 ‰ 1: Let D =
␣

k P N
ˇ

ˇ ordpk(a) = φ(pk)
(

. Since a is a primitive root
modulo p, we find that 1 P D. Suppose that k P D. By the definition of the order
there exists n P N such that

aord
pk+1 (a) = 1 + npk+1 = 1 + nppk .

Therefore, aord
pk+1 (a) ” 1 mod pk and Theorem 6.29 implies that ordpk(a)|ordpk+1(a).

By the inductive assumption, ordpk(a) = φ(pk) = pk´1(p ´ 1); thus

pk´1(p ´ 1)|ordpk+1(a) .

166

This implies that there exists n1 P N such that ordpk+1(a) = n1p
k´1(p ´ 1). On the

other hand, Theorem 6.29 also implies that

ordpk+1(a)|φ(pk+1) = pk(p ´ 1) ;

thus there exists n2 P N such that n2 ¨ ordpk+1(a) = pk(p ´ 1). Therefore, n1n2 = p

which, by the fact that p is prime, shows that (n1, n2) = (1, p) or (n1, n2) = (p, 1). If
(n1, n2) = (1, p), then ordpk+1(a) = pk´1(p ´ 1) = φ(pk) which further shows that

aφ(p
k) mod pk+1 = 1 ,

a contradiction to Lemma 6.33. Therefore, (n1, n2) = (p, 1) and we then have

ordpk+1(a) = pk(p ´ 1) = φ(pk+1) .

This concludes that k + 1 P D. By induction, D = N.

Case 2 - aφ(p) mod p2 = 1: First we note that in this case there exists n3 P N such that
ap´1 = 1 + n3p

2. Let r = ordp(a+ p). Then r|φ(p) and

(a+ p)r mod p = 1 .

By binomial expansion, ar mod p = 1 which further implies that φ(p)|r. Therefore,
r = φ(p); thus a+ p is also a primitive root modulo p. Next we show that (a+ p)φ(p)

mod p2 ‰ 1. To see this, by binomial expansion we have

(a+ p)p´1 = ap´1 + (p ´ 1)ap´2p+
p´1
ÿ

ℓ=2

Cp´1
ℓ ap´ℓ´1pℓ

= 1 + n3p
2 ´ pap´2 + p2ap´2 + p2

p´1
ÿ

ℓ=2

Cp´1
ℓ ap´ℓ´1pℓ´2

= 1 + n4p
2 ´ pap´2 .

Since (by Fermat little theorem) ap´1 mod p = 1, p ∤ ap´2; thus (a+p)φ(p) mod p2 ‰ 1.
Therefore, Case 1 shows that ordpk+1(a+ p) = φ(pk+1). ˝

Theorem 6.35. Let N =
J
ś

j=1

nj with nj P N and gcd(ni, nj) = 1 if i ‰ j. Then g : Z˚
N Ñ

Z˚
n1

ˆ Z˚
n2

ˆ ¨ ¨ ¨ ˆ Z˚
nJ

defined by

g(a) =
(
amod n1, amod n2, ¨ ¨ ¨ , amod nJ

)
is a bijection.

167

Proof. We first show that g(Z˚
N) Ď Z˚

n1
ˆ Z˚

n2
ˆ ¨ ¨ ¨ ˆ Z˚

nJ
. For each 1 ď j ď J , let

gj(a) = a mod nj. Then g = (g1, ¨ ¨ ¨ , gJ), and gj(a) P Z˚
nj

for all a P Z˚
N . Let a P Z˚

N

and j P t1, 2, ¨ ¨ ¨ , Ju be given, and γ = gcd(gj(a), nj). Then there exist ℓ, k P N such that
gj(a) = γℓ and nj = γk. Since

γℓ = gj(a) = a ´

[a
nj

]
nj = a ´

[a
nj

]
γk ,

we find that

a

γ
= ℓ+

[a
nj

]
k .

Therefore, γ|a. Moreover, nj|N , we must have γ|N as well; thus the fact that gcd(a,N) = 1

implies that γ = 1. In other words, gcd(gj(a), nj) = 1 for all 1 ď j ď J , and this shows that
gj(a) P Z˚

nj
for all 1 ď j ď J ; thus g(Z˚

N) Ď Z˚
n1

ˆ Z˚
n2

ˆ ¨ ¨ ¨ ˆ Z˚
nJ

.

Next we show that g is injective. Suppose the contrary that there exist a1, a2 P Z˚
N ,

a1 ‰ a2, such that g(a1) = g(a2). W.L.O.G. we assume that a1 ą a2. Then for all
1 ď j ď J , gj(a1) = gj(a2); thus

a1 ´ a2 =
([a1
nj

]
´

[a2
nj

])
nj @ 1 ď j ď J .

Therefore, nj|(a1 ´ a2) for all 1 ď j ď J . Since gcd(ni, nj) = 1 if i ‰ j and N =
J
ś

j=1

nj, we

find that N |(a1 ´ a2), a contradiction. This establishes that g is injective.

Finally, we prove that g is surjective. Let mj = N/nj. Then gcd(mj, nj) = 1; thus there
exist xj, yj P Z such that mjxj + njyj = 1. For b = (b1, ¨ ¨ ¨ , bJ) P Z˚

n1
ˆ Z˚

n2
ˆ ¨ ¨ ¨ ˆ Z˚

nJ
,

define

h(b) =
(J
ÿ

j=1

mjxjbj

)
mod N . (6.10)

This definition of h is well-defined: if x̃j and ỹj also validate mjx̃j + nj ỹj = 1, then for all

168

1 ď k ď J , by the fact that nj/mk P N if j ‰ k, we find that

1

nk

J
ÿ

j=1

mj(xj ´ x̃j)bj =
ÿ

j‰k

mj

nk
(xj ´ x̃j)bj +

mk

nk
(xk ´ x̃k)bk

=
ÿ

j‰k

mj

nk
(xj ´ x̃j)bj +

mkxk ´ mkx̃k
nk

bk

=
ÿ

j‰k

mj

nk
(xj ´ x̃j)bj +

(1 ´ nkyk) ´ (1 ´ nkỹk)

nk
bk

=
ÿ

j‰k

mj

nk
(xj ´ x̃j)bj ´ (yk ´ ỹk)bk P Z .

This shows that nk is a factor of
J
ř

j=1

mj(xj ´ x̃j)bj for all 1 ď k ď J . Since gcd(ni, nj) = 1

if i ‰ j, we also have N is a factor of
J
ř

j=1

mj(xj ´ x̃j)bj. Therefore,

(J
ÿ

j=1

mjxjbj

)
mod N =

(J
ÿ

j=1

mjx̃jbj

)
mod N ;

thus h given by (6.10) is well-defined.
Now we show that g is surjective by showing that h(b) P Z˚

N and g(h(b)) = b for all
b P Z˚

n1
ˆZ˚

n2
ˆ¨ ¨ ¨ˆZ˚

nJ
. Let b P Z˚

n1
ˆZ˚

n2
ˆ¨ ¨ ¨ˆZ˚

nJ
be given. For a fixed k P t1, 2, ¨ ¨ ¨ , Ju,

1

nk
(h(b) ´ bk) =

1

nk

[(J
ÿ

j=1

mjxjbj

)
mod N ´ bk

]
=

1

nk

#

J
ÿ

j=1

mjxjbj ´

[
řJ
j=1mjxjbj

N

]
N ´ bk

+

=
ÿ

j‰k

mj

nk
xjbj +

mkxk ´ 1

nk
bk ´

[
řJ
j=1mjxjbj

N

]
N

nk
P Z .

Therefore, for each 1 ď k ď J there exists zk P Z such that

h(b) = bk + zknk . (6.11)

It then suffices to show that h(b) P Z˚
N since then gk(h(b)) = bk which establishes that

g(h(b)) = b. Nevertheless, (6.11) implies that

gcd(h(b), nk) = gcd(bk, nk) = 1 @ 1 ď k ď J .

169

The fact that gcd(ni, nj) = 1 if i ‰ j further shows that gcd(h(b), N) = 1; thus h(b) P Z˚
N

and we conclude that g is surjective. ˝

Lemma 6.36. Let p be an odd prime, k P N, and s P N Y t0u. For a randomly chosen b

from Z˚
pk

with equally distributed probability 1/φ(pk), the probability of that ordpk(b)/2s is
an odd number is not greater than 1

2
. In other words,

(@ p, k, s)
(

#
␣

b P Z˚
pk

ˇ

ˇ ordpk(b) = 2st with an odd t
(

ď
1

2
φ(pk)

)
.

Proof. Let p, k and s be given. By the definition of the Euler function, #Z˚
pk

= φ(pk).
Furthermore, there exist uniquely determined µ, ν P N with ν odd such that

φ(pk) = pk(p ´ 1) = 2µν .

By Theorems 6.32 and 6.34 it follows that there exists a primitive root a P N for pk and
from Theorem 6.29 it follows that

Z˚
pk =

␣

aj mod pk
ˇ

ˇ j P t1, 2, ¨ ¨ ¨ , φ(pk)
(

.

Hence, via the identification b = aj mod pk, the random selection of one of the equally
distributed b in Z˚

pk
is the same as the random selection of an equally distributed j P

␣

1, ¨ ¨ ¨ , φ(pk)
(

. Moreover, we know from Theorem 6.29 that

ordpk(b) =
φ(pk)

gcd(j, φ(pk))

which shows that ordpk(b) = 2st if and only if

2st =
2µν

gcd(j, 2µν) . (6.12)

By (6.12) we can deduce that the case s ą µ cannot occur because in that case we would
have ν = 2s−µt ¨ gcd(j, 2µν) and thus 2|ν, a contradiction to the assumption of an odd µ in
φ(pk) = 2µν. Therefore, for the event “ordpk(b)/2s is odd” to happen, we must have s ď µ.

Now consider the case s ď µ (so that the event “ordpk(b)/2s is odd” could happen).
Suppose that j = 2ωx for some odd x (in the identification b = aj mod pk). Then

gcd(j, 2µν) = 2mintω,µu
ź

p: odd primes
pκp (6.13)

170

with some κp P N Y t0u. In order to have ordpk(b) = 2st, using (6.12) we obtain that

gcd(j, 2µν) = 2µ´sν

t
. (6.14)

Since ν and t are assumed odd, it follows that then ν/t has to be odd as well. It then follows
from (6.13) and (6.14) that mintω, µu = µ−s which shows ω = µ−s; thus j takes the form
j = 2µ−sx with an odd x and belong to

␣

1, ¨ ¨ ¨ , φ(pk)
(

. In this set there exist 2sν multiples
of 2µ−s, namely

␣

2µ´s ˆ 1, 2µ´s ˆ 2, ¨ ¨ ¨ , 2µ´s ˆ 2sν
(

.

Of these 2sν multiples of 2µ−s only half are of the form j = 2µ−sx with an odd x. Therefore,
when s ď u the fact that all j are chosen with the same probability implies that the
probability of that ordpk(b)/2s is an odd number is given by

Number of possible j of the form j = 2µ−sx with x odd
Number of possible j

which, using that s ď µ, is not greater than 1/2. ˝

Finally, we restate and prove our main theorem in this sub-section.

Theorem 6.37. Let N P N be odd with prime factorization N =
J
ś

j=1

p
νj
j , where p1, ¨ ¨ ¨ ,

pJ are distinct prime numbers. For a randomly chosen b P Z˚
N , the probability of that

r ” ordN(b) is even and br/2 + 1 mod N ‰ 0 is at least 1 ´
1

2J´1
.

Proof. Since by assumption N is odd, all its prime factors p1, ¨ ¨ ¨ , pJ have to be odd as well,
and we can apply Lemma 6.36 for their powers pνjj . We establish the theorem by showing
that the probability of that “r is odd” or “r is even but br/2 + 1 = 0” mod N is not greater
than 1

2J´1
.

By Theorem 6.35, we know that every b P Z˚
N corresponds uniquely to a set of bj P Z˚

nj

with 1 ď j ď J and vice versa, where nj = p
νj
j and bj ” b mod nj. An arbitrary selection of

b is thus equivalent to an arbitrary selection of the tuple (b1, ¨ ¨ ¨ , bJ) P Z˚
n1

ˆ ¨ ¨ ¨ ˆ Z˚
nJ

.
Suppose that r = ordN(b), rj = ordnj

(bj) and write r = 2st, rj = 2sj tj for some odd
numbers t and tj. We first show that

r = lcm(r1, r2, ¨ ¨ ¨ , rJ) , (6.15)

171

where lcm(r1, r2, ¨ ¨ ¨ , rJ) denotes the least common multiple of r1, r2, ¨ ¨ ¨ , rJ . To see this,
note that for any k P N,

bkj mod p
νj
j =

(
b mod p

νj
j

)k mod p
νj
j = bk mod p

νj
j ;

thus rj is also the smallest natural number satisfying

brj ” 1 mod p
νj
j . (6.16)

In other words, rj = ordnj
(b). By the definition of r there exists z P N such that

br = 1 + zN = 1 + z
J
ź

j=1

p
νj
j ,

thus br ” 1 mod p
νj
j for all 1 ď j ď J . Theorem 6.29 then shows that rj|r for all 1 ď j ď J

so that we have
lcm(r1, r2, ¨ ¨ ¨ , rJ)|r . (6.17)

Let L ” lcm(r1, r2, ¨ ¨ ¨ , rJ) and 1 ď j ď J . By Theorem 6.29 again L satisfies bL ” 1 mod
p
νj
j ; thus pνjj is a factor of bL ´ 1. Since p1, ¨ ¨ ¨ , pJ are distinct primes, we find that the

product of all pνjj is also a factor of bL ´ 1. Therefore, bL ” 1 mod N . Theorem 6.29 then
implies that r|L. Together with (6.17), we conclude (6.15).

Next we show that

the event “r is odd” _ “r is even but br/2 + 1 ” 0 mod N” corresponds to a
subset of the set

␣

(s1, ¨ ¨ ¨ , sJ)
ˇ

ˇ s1 = s2 = ¨ ¨ ¨ = sJ = s for some s P N Y t0u
(

.
(6.18)

Using (6.15), we find that r is odd if and only if all r1
js are odd. Therefore,

r is odd if and only if sj = 0 for all 1 ď j ď J . (6.19)

Now we consider the case that r is even but br/2 + 1 ” 0 mod N . Then there exists ℓ P N
such that br/2 + 1 = ℓN . Letting ℓj = ℓN/p

νj
j , we have

br/2 + 1 = ℓjp
νj
j @ 1 ď j ď J ;

thus
br/2 + 1 ” 0 mod p

νj
j . (6.20)

172

On the other hand, note that (6.15) implies that sj ď s for all 1 ď j ď J . Suppose that
sj ă s for some 1 ď j ď J . Then the fact that

2st = r = kjrj = kj2
sj tj

shows that kj = 2s´sj t/tj is even. Let zj = kj/2. Then r

2
= zjrj with zj P N; thus using

(6.16) we find that

br/2 mod p
νj
j = bzjrj mod p

νj
j =

(
brj mod p

νj
j

)zj mod p
νj
j = 1 mod p

νj
j = 1 ,

a contradiction to (6.20). Therefore, we must have sj = s for all 1 ď j ď J if r is even but
br/2 + 1 ” 0 mod N . Together with (6.19), we conclude (6.18).

Since all sj’s are chosen independently, using (6.18) Lemma 6.36 implies that

P(“r is odd” _ “br/2 + 1 ” 0 mod N”) ď

8
ÿ

s=0

P(“sj = s for all 1 ď j ď J”)

=
8
ÿ

s=0

J
ź

j=1

P(“sj = s”) =
8
ÿ

s=0

P(“s1 = s”)
J
ź

j=2

P(“sj = s”)

=
8
ÿ

s=0

P(“s1 = s”)
J
ź

j=2

P
(
“rj = 2st with an odd t”

)
ď

8
ÿ

s=0

P(“s1 = s”) 1

2J´1
=

1

2J´1
.

Therefore, the probability of that r ” ordN(b) is even and br/2 + 1 mod N ‰ 0 is at least
1 ´

1

2J´1
. ˝

Chapter 7

Grover’s Search Algorithm

7.1 The Problem

The search problem: For N = 2n, we are given an arbitrary x P t0, 1uN . The goal is to
find an i such that xi = 1 (and to output ‘no solutions’ if there are no such i). We denote
the number of solutions in x by t (that is, t is the Hamming weight of x). This problem
may be viewed as a simplification of the problem of searching an N -slot unordered database.
Classically, a randomized algorithm would need O(N) queries to solve the search problem.
Grover’s algorithm solves it in O(

?
N) queries, and O(

?
N logN) other gates (the number

of gates can be reduced a bit further, see Exercise 7).

7.2 Grover’s Algorithm

Let Ox,˘|iy = (´1)xi |iy denote the ˘-type oracle for the input x, and R be the unitary
transformation that puts a ´�1 in front of all basis states |iy whenever i ‰ 0, and that
does nothing to the basis state |0ny. The Grover iterate is G = HbnRHbnOx,˘. Note that
1 Grover iterate makes 1 query, and uses O(log2N) other gates. Grover’s algorithm starts
in the n-bit state |0ny, applies a Hadamard transformation to each qubit to get the uniform

superposition |Uy =
1

?
N

N´1
ř

i=0

|iy of all N indices, applies G to this state k times (for some

k to be chosen later), and then measures the final state. Intuitively, what happens is that
in each iteration some amplitude is moved from the indices of the 0-bits to the indices of
the 1-bits. The algorithm stops when almost all of the amplitude is on the 1-bits, in which
case a measurement of the final state will probably give the index of a 1-bit. Figure 7.1

173

174

illustrates this.

. . .

. . .

|0n´3y . . .

. . .

|0ny ” |0y
bn

|0y

Hbn G G G
|0y

|0y
l jh n

k copies of G

Figure 7.1: Grover’s algorithm, with k Grover iterates

To analyze this, define the following “good” and “bad” states:

|Gy =
1

a

#ti |xi = 1u

ÿ

ti |xi=1u

|iy and |By =
1

a

#ti |xi = 0u

ÿ

ti |xi=0u

|iy .

Let t = #ti |xi = 1u. Then the uniform state over all indices edges can be written as

|Uy =
1

?
N

N´1
ÿ

i=0

|iy =
1

?
N

(
ÿ

ti |xi=1u

+
ÿ

ti |xi=0u

)
|iy

=
1

?
N

(?
t|By +

?
N ´ t|Gy

)
= sin θ|Gy + cos θ|By ,

where θ = arcsin
c

t

N
.

The Grover iterate G is actually the product of two reflections (in the 2-dimensional
space spanned by |Gy and |By): Ox,˘ is a reflection through |By, and

HbnRHbn = Hbn(2|0nyx0n | ´ I)Hbn = 2|UyxU | ´ I

is a reflection through |Uy. Here is Grover’s algorithm restated, assuming we know the
fraction of solutions is ε = t/N :

1. Set up the starting state |Uy = Hbn|0ny

2. Repeat the following k = O(1/
?
ε) times:

175

(a) Reflect through |By (that is, apply Ox,˘)

(b) Reflect through |Uy (that is, apply HbnRHbn).

3. Measure the first register and check that the resulting i is a solution.

Geometric argument: There is a fairly simple geometric argument why the algorithm
works. The analysis is in the 2-dimensional real plane spanned by |By and |Gy. We start
with |Uy = sin θ|Gy + cos θ|By: The two reflections (a) and (b) increase the angle from θ to
3θ, moving us towards the good state, as illustrated in Figure 7.2.

|Gy

|By

|Uy

Ox,˘|Uy

θ
θ

|Gy

|By

|Uy

G|Uy

θ
2θ

|Gy

|By

|Uy

θ

Figure 7.2: The first iteration of Grover: (left) start with |Uy, (middle) reflect through |By

to get Ox,˘|Uy, (right) reflect through |Uy to get G|Uy

The next two reflections (a) and (b) increase the angle with another 2θ, etc. More
generally, after k applications of (a) and (b) our state has become

sin((2k + 1)θ)|Gy + cos((2k + 1)θ)|By .

If we now measure, the probability of seeing a solution is Pk = sin2((2k+1)θ). We want Pk
to be as close to 1 as possible. Note that if we can choose rk =

π

4θ
´

1

2
, then (2rk + 1)θ =

π

2
and hence P

rk = sin2 π

2
= 1. An example where this works is if t = N/4, for then θ = π/6

and rk = 1. Unfortunately rk =
π

4θ
´

1

2
will usually not be an integer, and we can only do

an integer number of Grover iterations. However, if we choose k to be the integer closest to
rk, then our final state will still be close to |Gy and the failure probability will still be small
(assuming t ! N):

1 ´ Pk = cos2((2k + 1)θ) = cos2((2rk + 1)θ + 2(k ´ rk)θ) = cos2
(π
2
+ 2(k ´ rk)θ

)
= sin2(2(k ´ rk)θ) ď sin2(θ) =

t

N
,

176

where we used |k´rk| ď 1/2. Since arcsin(θ) ě θ, the number of queries is k ď
π

4θ
ď

π

4

c

N

t
.

Algebraic argument: For those who do not like geometry, here is an alternative (but
equivalent) algebraic argument. Let ak denote the amplitude of the indices of the t 1-bits
after k Grover iterates, and bk the amplitude of the indices of the 0-bits. Initially, for the
uniform superposition |Uy we have a0 = b0 =

1
?
N

. Since

Hbn = Hn and R = diag(1,´1,´1, ¨ ¨ ¨ ,´1) ,

we find that

HbnRHbn = Hn

2


1 0 ¨ ¨ ¨ 0
0 0 ¨ ¨ ¨ 0
...
0 0 ¨ ¨ ¨ 0

´ I

Hn =
2

N


1 1 ¨ ¨ ¨ 1
1 1 ¨ ¨ ¨ 1
...
1 1 ¨ ¨ ¨ 1

´ I ”

[2
N

]
´ I ,

where
[2
N

]
is the N ˆ N matrix in which all entries are 2

N
; thus we find the following

recursion:

ak+1 =
2

N

[
´tak + (N ´ t)bk

]
+ ak =

N ´ 2t

N
ak +

2(N ´ t)

N
bk ,

bk+1 =
2

N

[
´tak + (N ´ t)bk

]
´ bk =

´2t

N
ak +

N ´ 2t

N
bk .

With θ = arcsin
c

t

N
as before, we have

[
ak+1

bk+1

]
=

[
cos(2θ) 2 cos2 θ

´2 sin2 θ cos(2θ)

] [
ak
bk

]
.

Since [
cos(2θ) 2 cos2 θ

´2 sin2 θ cos(2θ)

]
=

[
cos θ cos θ
i sin θ ´i sin θ

] [
e2iθ 0
0 e´2iθ

] [
cos θ cos θ
i sin θ ´i sin θ

]´1

,

we have [
cos θ cos θ
i sin θ ´i sin θ

]´1 [
ak+1

bk+1

]
=

[
e2iθ 0
0 e´2iθ

] [
cos θ cos θ
i sin θ ´i sin θ

]´1 [
ak
bk

]
;

177

thus[
ak
bk

]
=

[
cos θ cos θ
i sin θ ´i sin θ

] [
e2iθ 0
0 e´2iθ

]k [cos θ cos θ
i sin θ ´i sin θ

]´1[
a0
b0

]
=

1
?
N

[
cos θ cos θ
i sin θ ´i sin θ

] [
e2kiθ 0
0 e´2kiθ

]
1

´2i sin θ cos θ

[
´i sin θ ´cos θ
´i sin θ cos θ

] [
1
1

]
=

1
?
N

1

´2i sin θ cos θ

[
cos θ cos θ
i sin θ ´i sin θ

] [
´e (2k+1)iθ

e´(2k+1)iθ

]
=

1
?
N

[
sin(2k + 1)θ/ sin θ
cos(2k + 1)θ/ cos θ

]
.

Therefore, we obtain the following formula for ak and bk:

ak =
1

?
t

sin((2k + 1)θ) and bk =
1

?
N ´ t

cos((2k + 1)θ) .

Accordingly, after k iterations the success probability (the sum of squares of the amplitudes
of the locations of the t 1-bits) is the same as in the geometric analysis

Pk = t ¨ a2k = sin2((2k + 1)θ) .

Thus we have a bounded-error quantum search algorithm with O(
a

N/t) queries, assuming
we know t. We now list (without full proofs) a number of useful variants of Grover:

1. If we know t exactly, then the algorithm can be tweaked to end up in exactly the
good state. Roughly speaking, you can make the angle θ slightly smaller, such that
rk =

π

4θ
´

1

2
becomes an integer.

2. If we do not know t, then there is a problem: we do not know which k to use, so
we do not know when to stop doing the Grover iterates. Note that if k gets too big,
the success probability Pk = sin2((2k + 1)θ)) goes down again! However, a slightly
more complicated algorithm (basically running the above algorithm with systematic
different guesses for k) shows that an expected number of O(

a

N/T) queries still
suffices to find a solution if there are t solutions. If there is no solution (t = 0), then
we can easily detect that by checking xi for the i that the algorithm outputs.

3. If we know a lower bound τ on the actual (possibly unknown) number of solutions t,
then the above algorithm uses an expected number of O(

a

N/τ) queries. If we run
this algorithm for up to three times its expected number of queries, then (by Markov’s
inequality) with probability at least 2/3 it will have found a solution. This way we
can turn an expected runtime into a worst-case runtime.

178

4. If we do not know t but would like to reduce the probability of not finding a solu-
tion to some small ε ą 0, then we can do this using O(

a

N log(1/ε)) queries. The
important part here is that the log(1/ε) is inside the square-root; usual error reduc-
tion by O(log(1/ε)) repetitions of basic Grover would give the worse upper bound of
O(

?
N log(1/ε)) queries.

7.3 Amplitude Amplification
The analysis that worked for Grover’s algorithm is actually much more generally applicable.
Let χ : Z Ñ t0, 1u be any Boolean function; inputs z P Z satisfying χ(z) = 1 are called
solutions. Suppose we have an algorithm to check whether z is a solution. This can be
written as a unitary Oχ that maps |zy to (´1)χ(z)|zy. Suppose also we have some (quantum
or classical) algorithm A that uses no intermediate measurements and has probability p of
finding a solution when applied to starting state |0y. Classically, we would have to repeat A
roughly 1/p times before we find a solution. The amplitude amplification algorithm below
only needs to run A and A´1 O(1/

?
p) times:

1. Setup the starting state |Uy = A|0y.

2. Repeat the following O(1/
?
p) times:

(a) Reflect through |By (that is, apply Oχ)

(b) Reflect through |Uy (that is, apply ARA´1)

3. Measure the first register and check that the resulting element x is marked.

Defining θ = arcsin ?
p and good and bad states |Gy and |By in analogy with the

earlier geometric argument for Grover’s algorithm, the same reasoning shows that amplitude
amplification indeed finds a solution with high probability. This way, we can speed up a
very large class of classical heuristic algorithms: any algorithm that has some non-trivial
probability of finding a solution can be amplified to success probability nearly 1 (provided we
can efficiently check solutions; that is, implement Oχ). Note that the Hadamard transform
Hbn can be viewed as an algorithm with success probability p = t/N for a search problem
of size N with t solutions, because Hbn|0ny is the uniform superposition over all N locations.
Hence Grover’s algorithm is a special case of amplitude amplification, where Oχ = Ox,˘ and
A = Hbn.

Chapter 8

The HHL Algorithm

8.1 The Linear System Problem
In this chapter we present the Harrow-Hassidim-Lloyd (HHL) algorithm for solving large
systems of linear equations. Such a system is given by an N ˆ N matrix A with real or
complex entries, and an N -dimensional nonzero vector b. Assume for simplicity that N = 2n.
The linear-system problem is

LSP: find an N -dimensional vector x such that Ax = b.

Solving large systems of linear equations is extremely important in many computational
problems in industry, in science, in optimization, in machine learning, etc. In many appli-
cations it suffices to find a vector rx that is close to the actual solution x.

We will assume A is invertible (equivalently, has rank N) in order to guarantee the
existence of a unique solution vector x, which is then just A´1b. This assumption is just for
simplicity: if A does not have full rank, then the methods below would still allow to invert
it on its support, replacing A´1 by the “Moore-Penrose pseudoinverse”.

The HHL algorithm can solve “well-behaved” large linear systems very fast (under certain
assumptions), but in a rather weak sense: instead of outputting the N -dimensional solution
vector x itself, its goal is to output the n-qubit state

|xy =
1

}x}

N´1
ÿ

i=0

xi|iy

or some other n-qubit state close to |xy. This state |xy has the solution vector as its vector
of amplitudes, up to normalization. This is called the quantum linear-system problem:

QLSP: find an n-qubit state |rxy such that }|xy ´ |rxy} ď ε and Ax = b.

179

180

Note that the QLSP is an inherently quantum problem, since the goal is to produce an
n-qubit state whose amplitude-vector (up to normalization and up to ε-error) is a solution
to the linear system. In general this is not as useful as just having the N -dimensional vector
x written out on a piece of paper, but in some cases where we only want some partial
information about x, it may suffice to just (approximately) construct |xy.

W.L.O.G. We will assume that A is Hermitian: if A is a non-hermitian N ˆ N matrix,
then we consider the augmented linear system (of size 2N) sAsx = sb, where with 0N N̂ denoting
the N ˆ N zeros matrix and 0N 1̂ denoting the zero (column) vectors in RN ,

sA ”

[
0N N̂ A

A: 0N N̂

]
, sb =

[
b

0N 1̂

]
.

Note that if x solves Ax = b (or equivalently, x = A´1b), then sx takes the form sx =

[
0N 1̂

x

]
.

Let us state the more restrictive assumptions that will make the linear system “well-
behaved” and suitable for the HHL algorithm:

1. We have a unitary that can prepare the vector b as an n-qubit quantum state

|by =
1

}b}

N´1
ÿ

i=0

bi|iy

using a circuit of B 2-qubit gates. We also assume for simplicity that }b} = 1.

2. The matrix A is s-sparse and we have sparse access to it. Such sparsity is not essential
to the algorithm, and could be replaced by other properties that enable an efficient
block-encoding of A.

3. The matrix A is well-conditioned: the ratio between its largest and smallest singular
value is at most some κ. For simplicity, assume the smallest singular value is not
smaller than 1/κ while the largest is not greater than 1. In other words, all eigenvalues
of A lie in the interval [´1,´1/κ] Y [1/κ, 1]. The smaller the “condition number” κ
is, the better it will be for the algorithm. Let us assume our algorithm knows κ, or at
least knows a reasonable upper bound on κ.

8.2 The Basic HHL Algorithm for Linear Systems
Let us start with some intuition. The solution vector x that we are looking for is A´1b, so we

would like to apply A´1 to b. If A has spectral decomposition A =
N´1
ř

j=0

λjaja
:
j, then the map

181

A´1 is the same as the map aj ÞÑ
1

λj
aj: we just want to multiply the eigenvector aj with

the scalar 1/λj. The vector b can also be written as a linear combination of the eigenvectors

aj: b =
N´1
ř

j=0

βjaj (we do not need to know the coefficients βj for what follows). We want to

apply A´1 to b to obtain A´1b =
N´1
ř

j=0

βj
1

λj
aj, normalized, as an n-qubit quantum state.

Unfortunately the maps A andA´1 are not unitary (unless |λj| = 1 for all j), so we cannot
just apply A´1 as a quantum operation to state |by to get state |xy. Fortunately U = e2πiA =
N´1
ř

j=0

e2πiλjaja
:
j is unitary, and has the same eigenvectors as A and A´1. We can implement U

and powers of U by Hamiltonian simulation, and then use phase estimation (Section 5.5) to
estimate the λj associated with eigenvector |ajy with some small approximation error (for
this sketch, assume for simplicity that the error is 0).

How does one invert the eigenvalues all together at the same time? This is done through
a smart design of multi-controlled rotation gates. Conditioned on our estimate of λj we can
then rotate an auxiliary |0y-qubit to

d

1 ´
1

κ2λ2
j

|0y +
1

κλj
|1y

(this is a valid state because |κλj| ě 1). Next we undo the phase estimation to set the register
that contained the estimate back to |0y. Suppressing the auxiliary qubits containing the
temporary results of the phase estimation, we have now unitarily mapped

|ajy|0y ÞÑ |ajy b

(
d

1 ´
1

κ2λ2
j

|0y +
1

κλj
|1y

)
.

If we prepare a copy of |by|0y =
N´1
ř

j=0

βj|ajy|0y and apply the above unitary map to it, then

we obtain
N´1
ÿ

j=0

βj|ajy

(
1

κλj
|0y +

d

1 ´
1

κ2λ2
j

|1y

)
=

1

κ

N´1
ÿ

j=0

βj
1

λj
|ajy|0y

l jh n

9|xy

+|ϕy|1y ,

where we do not care about the (sub-normalized) state |ϕy. Note that because
N´1
ř

j=0

|βj/λj|
2 ě

N´1
ř

j=0

|βj|
2 = 1, the norm of the part of the state ending in qubit |1y is at least 1/κ2. Ac-

182

cordingly, we can now apply O(κ) rounds of amplitude amplification to amplify this part of
the state to have amplitude essentially 1. This prepares state |xy, as intended. This rough
sketch is the basic idea of HHL. It leads to an algorithm that produces a state |rxy that is
ε-close to |xy, using roughly κ2s/ε queries to H and roughly κs(κn/ε + B) other 2-qubit
gates.

8.2.1 Detailed quantum algorithm

The algorithm uses three quantum registers, all of them set to |0y at the beginning of the
algorithm. One register, which we will denote with the sub-index nℓ, is used to store a
binary representation of the eigenvalues of A. A second register, denoted by nb, contains
the vector solution, and from now on N = 2nb . There is an extra register, for the auxiliary
qubits. These are qubits used as intermediate steps in the individual computations but will
be ignored in the following description since they are set to |0y at the beginning of each
computation and restored back to the |0y state at the end of the individual operation.

The following is an outline of the HHL algorithm with a high-level drawing of the cor-
responding circuit. For simplicity all computations are assumed to be exact in the ensuing
description.

|0y

Eigen-
value

inversion
|0nℓy

QPE QPE:|0nay Load
|by

F (x)

|0nby

Step 3 Step 5Step 2 Step 4Step 1 Step 6

Figure 8.1: The quantum circuit of the HHL algorithm

Step 1: Load the data |by P CN ; that is, perform the transformation |0nby ÞÑ |by.

Step 2: Apply Quantum Phase Estimation (QPE) with

U = eiAt =
N´1
ÿ

j=0

eiλjt|ajyxaj |

183

for a certain t (here we take t = 1). The quantum state of the register expressed in

the eigenbasis of A is now
N´1
ř

j=0

bj|λjynℓ
|ajy; that is,

QPE(U, |0nℓy|by) =
N´1
ÿ

j=0

bj|λjynℓ
|ajy .

Here we recall that |λjynℓ
is the nℓ-bit binary approximation of λj satisfying |λjynℓ

=

|[2nλ]y.

Step 3: Add an auxiliary qubit and apply a rotation conditioned on |λjynℓ
,

N´1
ÿ

j=0

bj|λjynℓ
|ajy

(
d

1 ´
1

κ2λ2
j

|0y +
1

κλj
|1y

)
,

where κ is (an upper bound of) the condition number of A.

Step 4: Apply QPE: (that is, undo QPE). Ignoring possible errors from QPE, this results
in

N´1
ÿ

j=0

bj|0
nℓy|ajy

(
d

1 ´
1

κ2λ2
j

|0y +
1

κλj
|1y

)
.

Step 5: Measure the auxiliary qubit in the computational basis. If the outcome is 1, the
register is in the post-measurement state(

1
řN´1
j=0 |bj|2|λj|´2

) 1
2 N´1
ÿ

j=0

bj
λj

|0nℓy|ajy

which up to a normalisation factor corresponds to the solution.

Step 6: Apply an observable M to calculate F (x) ” xx|M |xy.

Example 8.1. Consider solving the linear system Ax = b, where

A =

[
1 ´1/3

´1/3 1

]
and |by =

[
1
0

]
.

The solution x =
[
9/8 3/8

]T, and the corresponding QLSP is A|xy = |by.
We will use nb = 1 qubit to represent |by and later the solution |xy, nℓ = 2 qubits to

store the binary representation of the eigenvalues, and 1 auxiliary qubit to store whether
the conditioned rotation, hence the algorithm, was successful.

184

For the purpose of illustrating the algorithm, we will cheat a bit and calculate the
eigenvalues of A to be able to choose t to obtain an exact binary representation of the
rescaled eigenvalues in the nℓ-register. However, keep in mind that for the HHL algorithm
implementation one does not need previous knowledge of the eigenvalues. Having said that,
a short calculation will give λ1 = 2/3 and λ2 = 4/3.

Recall that the QPE will output an nℓ-bit (2-bit in this case) binary approximation
to 2nλjt. Therefore, if we set t = 3π

4
the QPE will give a 2-bit binary approximation to

λ1t

2π
=

1

4
and λ2t

2π
=

1

2
, which is, respectively,

|01ynℓ
and |10ynℓ

.

The eigenvectors are, respectively,

|u1y =
1

?
2

[
1

´1

]
and |u2y =

1
?
2

[
1
1

]
.

Again, keep in mind that one does not need to compute the eigenvectors for the HHL
implementation.

We can then write |by in the eigenbasis of A as

|by =
2
ÿ

j=1

1
?
2

|ajy .

Now we are ready to go through the different steps of the HHL algorithm.

Step 1: State preparation in this example is trivial since |by = |0y.

Step 2: Applying QPE will yield

1
?
2

|01y|u1y +
1

?
2

|10y|u2y .

Step 3: Conditioned rotation with κ = 8 which is bigger than the exact condition number.
Note, the constant κ here needs to be chosen such that it is bigger than the smallest
(rescaled) eigenvalue of 14 but as small as possible so that when the auxiliary qubit is

185

measured, the probability of it being in the state |0y is large:

1
?
2

|01y|u1y

(
1

8 ¨ 1/4
|0y +

d

1 ´
1

82 ¨ 1/42
|1y

)

+
1

?
2

|10y|u2y

(
1

8 ¨ 1/2
|0y +

d

1 ´
1

82 ¨ 1/22
|1y

)

=
1

?
2

|01y|u1y

(
1

2
|0y +

?
3

2
|1y

)
+

1
?
2

|10y|u2y

(
1

4
|0y +

?
15

4
|1y

)
.

Step 4: After applying QPE: the quantum computer is in the state

1
?
2

|00y|u1y

(
1

2
|0y +

?
3

2
|1y

)
+

1
?
2

|00y|u2y

(
1

4
|0y +

?
15

4
|1y

)
.

Step 5: On outcome 0 when measuring the auxiliary qubit, the state is

1
a

5/32

(
1

?
2

|00y|u1y
1

2
|0y +

1
?
2

|00y|u2y
1

4
|0y

)
.

A quick calculation shows that

1
a

5/32

(
1

2
?
2

|u1y +
1

4
?
2

|u2y

)
=

|xy

}|xy}
.

Step 6: Without using extra gates, we can compute the norm of |xy: it is the probability
of measuring 0 in the auxiliary qubit from the previous step

P (|0y) =
(1

2
?
2

)2
+
(1

4
?
2

)2
=

5

32
.

	Logic Circuits
	Classical Logic Gates
	The NOT gate
	The AND gate and the OR gate
	The NAND gate and the NOR gate
	The XOR gate and the XNOR gate
	The TOFFOLI gate

	Universal Gates
	How A Classical Computer Adds Numbers
	Binary numbers
	Adder using logic circuits

	Classical Circuits

	Quantum Computing
	Quantum Mechanics
	Schrödinger equation
	Superposition
	Measurement
	Unitary evolution

	Qubits and Quantum Gates
	Quantum bits
	Quantum gates

	Quantum Registers
	Tensor product of quantum registers - preview
	Entanglement

	Quantum Circuits
	Quantum Teleportation

	Universality of Various Sets of Elementary Gates
	Quantum Parallelism
	The Early Algorithms
	Deutsch-Jozsa
	Bernstein-Vazirani

	Mathematical Backgrounds
	Vector Spaces and Linear Maps
	Vector Spaces
	Linear maps and their matrix representation
	Algebraic dual spaces

	Direct Sum of Vector Spaces and Multi-Linear Maps
	Direct sum of vector spaces
	Multi-linear maps

	Inner Product Spaces and Hilbert Spaces
	Dual Spaces and Adjoint Operators
	Unitary Operators and Unitary Matrices
	Unitary operators
	Unitary matrices

	Quantum Mechanics
	Tensor Product of Vector Spaces
	Tensor product
	Correspondence between tensor product and quantum circuits
	More examples

	Unitary Decomposition
	1-qubit gate decomposition
	Singular value decomposition
	The CS decomposition
	Decomposition of arbitrary quantum gates

	Implementation of Multi-Controlled Rotation Gates

	Simon's Algorithm
	Simon's Problem
	The Quantum Algorithm
	Classical Algorithms for Simon's Problem
	Upper bound
	Lower bound

	The Fourier Transform
	The Classical Discrete Fourier Transform
	The Fast Fourier Transform
	Application: Multiplying Two Polynomials
	The Quantum Fourier Transform
	Application: phase estimation

	Shor's Factoring Algorithm
	RSA Encryption
	Mathematical foundation
	Encryption based on factoring large numbers

	Reduction from Factoring to Period-finding
	Shor's Period-finding Algorithm
	Continued fractions
	Efficiency of Shor's Algorithm
	Shor's period-finding algorithm
	The period of f(a) = xa mod N is most likely even

	Grover's Search Algorithm
	The Problem
	Grover's Algorithm
	Amplitude Amplification

	The HHL Algorithm
	The Linear System Problem
	The Basic HHL Algorithm for Linear Systems
	Detailed quantum algorithm

