Mathematical Foundation of Quantum
Computing

B33 b2 F A

Contents

1 Logic Circuits

1.1 Classical Logic Gates
1.1.1 The NOT gate
1.1.2 The AND gate and the OR gate.
1.1.3 The NAND gate and the NOR gate
1.1.4 The XOR gate and the XNOR gate
1.1.5 The TOFFOLI gate
1.2 Universal Gates
1.3 How A Classical Computer Adds Numbers
1.3.1 Binary numbers.
1.3.2 Adder using logic circuitso
1.4 Classical Circuits
2 Quantum Computing
2.1 Quantum Mechanics
2.1.1 Schrodinger equationo
2.1.2 Superposition
2.1.3 Measurement Lo
2.1.4 Unitary evolution oo
2.2 Qubits and Quantum Gates oL
221 Quantum bits
222 Quantum gates
2.3 Quantum Registers
2.3.1 Tensor product of quantum registers - preview
2.3.2 Entanglemento

Ot T W NN =

—_ = = =
Ot W = =

2.4 Quantum Circuits 32
2.4.1 Quantum Teleportation 35
2.5 Universality of Various Sets of Elementary Gates 37
2.6 Quantum Parallelism 38
2.7 The Early Algorithms 39
2.7.1 Deutsch-Jozsa 40
2.7.2 Bernstein-Vaziranio 42
Mathematical Backgrounds 43
3.1 Vector Spaces and Linear Maps 43
3.1.1 Vector Spaces 43
3.1.2 Linear maps and their matrix representation 45
3.1.3 Algebraic dual spaces 47
3.2 Direct Sum of Vector Spaces and Multi-Linear Maps 49
3.2.1 Direct sum of vector spaces 49
3.2.2 Multi-linear mapso 50
3.3 Inner Product Spaces and Hilbert Spaces 51
3.4 Dual Spaces and Adjoint Operators 56
3.5 Unitary Operators and Unitary Matrices 61
3.5.1 Unitary operators 61
3.5.2 Unitary matriceso 63
3.6 Quantum Mechanics 65
3.7 Tensor Product of Vector Spaces 69
3.7.1 Tensor product 69
3.7.2 Correspondence between tensor product and quantum circuits 79
3.7.3 More examples 81
3.8 Unitary Decomposition o Lo 100
3.8.1 1-qubit gate decomposition 100
3.8.2 Singular value decomposition 102
3.8.3 The CS decomposition oL 105
3.8.4 Decomposition of arbitrary quantum gates 108
3.9 Implementation of Multi-Controlled Rotation Gates 113

1

Simon’s Algorithm 123

4.1 Simon’s Problem 123
4.2 The Quantum Algorithm oo 124
4.3 Classical Algorithms for Simon’s Problem 126

4.3.1 Upperbound 126

4.3.2 Lower bound 126
The Fourier Transform 129
5.1 The Classical Discrete Fourier Transform 129
5.2 The Fast Fourier Transform 130
5.3 Application: Multiplying Two Polynomials 131
5.4 The Quantum Fourier Transform 133
5.5 Application: phase estimation 136
Shor’s Factoring Algorithm 138
6.1 RSA Encryption 138

6.1.1 Mathematical foundation 138

6.1.2 Encryption based on factoring large numbers 144
6.2 Reduction from Factoring to Period-finding 147
6.3 Shor’s Period-finding Algorithm 149
6.4 Continued fractions 152
6.5 Efficiency of Shor’s Algorithm 00 154

6.5.1 Shor’s period-finding algorithm 154

6.5.2 The period of f(a) = z* mod N is most likely even 159
Grover’s Search Algorithm 173
7.1 The Problem 173
7.2 Grover’'s Algorithm 173
7.3 Amplitude Amplificationo 178
The HHL Algorithm 179
8.1 The Linear System Problem 179
8.2 The Basic HHL Algorithm for Linear Systems 180

8.2.1 Detailed quantum algorithm 182

Chapter 1

Logic Circuits

1.1 Classical Logic Gates

In a classical computer the processor essentially performs nothing more than a sequence
of transformations of a classical state into another one. In mathematical terminology, a
classical processor performs a sequence of evaluation of maps of the form
£ {0, 13 — {0,1}™
z = flx)

This is what we will refer to as the classical computational process, which is realized with

(1.1)

a concatenation of classical gates and circuits.

Definition 1.1. A classical logical gate, also called a Boolean function, is a map

g: {0,1}" — {0,1}

('xla' o 71711) — g(fﬂl,‘ o 7xn> .
We define an extended classical logical gate g as a map
g: {0,1}" — {0,1}m
(‘rh o ,l‘n> = (91(1’1, o 71:”)7 e 7gm(x17 T 7ITL>) 7

where each g; is a classical logic gate. A classical gate g is called reversible if it is a bijection
and thus invertible.
Example 1.2. The addition @ on Z, defined by

a®b=a+b—2ab Va,be{0,1} (1.2)

can be treated as a classical logic gate from {0,1}? to {0, 1} given by

(a,b) —» a®b Va,be{0,1}.

In the following sub-sections, we introduce some important classical logic gates.

1.1.1 The NOT gate

The NOT gate, also called an inverter, is a logic gate (from {0, 1} to {0, 1}) which implements

logical negation. It behaves according to the truth table below:

INPUT | OUTPUT
0 1
1 0

The analytical form of the NOT gate is given by NOT(a) = 1 — a for a € {0,1}. We note
that the NOT gate is reversible, and the inverse of the NOT gate is itself.

o

Figure 1.1: Traditional NOT Gate (Inverter) symbol

1.1.2 The AND gate and the OR gate

The AND gate (% R) is a basic digital logic gate (from {0, 1} to {0,1}) that implements
logical conjunction, and the OR gate (2§) is a digital logic gate that implements logical
disjunction. They behave according to the truth tables below:

INPUT | OUTPUT INPUT | OUTPUT
A | B | AANDB A | B A ORB
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1

Analytically, the function of AND finds the product of binary digits, while the function

of OR finds the maximum between two binary digits; that is,
AND(a,b) =a-b and OR(a,b) = max{a,b} Va,be{0,1}.

The logic gate symbols for the AND and OR gates are

ANSI/IEEE Std 91-1984 | IEC 60617-12 DIN 40700 ANSI/IEEE Std 91-1984 | IEC 60617-12 DIN 40700

O 1) D o

Figure 1.2: Logic gate symbols for AND (left) and OR (right) gates

We note that the ANND gate and the OR gate are not reversible.

1.1.3 The NAND gate and the NOR gate

The NAND gate (NOT-AND » * 2) is a logic gate whose output is complement to that
of an AND gate. In other words, the NAND gate produces an output which is false only
if all its inputs are true. On the other hand, the NOR gate (NOT-OR » ¥ £ /) is a logic
gate whose output is complement to that of an OR gate. They behave according to the
truth tables below:

INPUT | OUTPUT INPUT | OUTPUT
A | B |ANANDB A | B | ANORB
0 0 1 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 0

The logic gate symbols for the NAND and NOR gates are

ANSI/IEEE Std 91-1984 | IEC 60617-12 DIN 40700 ANSI/IEEE Std 91-1984 | IEC 60617-12 DIN 40700
— & b — =21
o— o—

Figure 1.3: Logic gate symbols for NAND (left) and NOR (right) gates

We also note that the NAND gate and the NOR gates are not reversible.

1.1.4 The XOR gate and the XNOR gate

The XOR . gate (sometimes EOR, or EXOR and pronounced as Exclusive OR > & & &
M) is a digital logic gate (from {0, 1}? to {0, 1}) that gives a true (1 or HIGH) output when
the number of true inputs is odd. If both inputs are false (0 or LOW) or both are true, a
false output results. XOR represents the inequality function; that is, the output is true if
the inputs are not alike otherwise the output is false. XOR can also be viewed as addition
modulo 2. As a result, XOR gates are used to implement binary addition in computers.

The XINOR gate (sometimes ENOR, EXNOR or NXOR and pronounced as Exclu-
sive NOR > & 7 % & f{) is a digital logic gate whose function is the logical complement
of the Exclusive OR (XOR) gate. The XOR and XNOR gates behave according to the
truth table below:

INPUT | OUTPUT INPUT | OUTPUT
A | B | AXORB A | B |AXNORB
0 0 0 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 1

The analytic form of the XOR and the XINOR gate, respectively, are

XOR(a,b) =a®b=a+b—2ab Va,be{0,1},
XNOR(a,b) =1®a®b=1+2ab—a—10 Va,be{0,1}.

The logic gate symbols for the XOR and XINNOR gates are

ANSV/IEEE Std 91-1984 | IEC 60617-12 DIN 40700 ANSV/IEEE Std 91-1984 | IEC 60617-12 DIN 40700

@ L @D

Figure 1.4: Logic gate symbols for XOR and XNOR gates

Similar to the AND, OR, NAND and NOR gates, the XOR and XNOR gates are

not reversible.

1.1.5 The Torroul gate

The Toffoli gate, also called CCNOT (pronounced controlled-controlled-not) gate, is a dig-
ital logic gate which behaves according to the truth table below:

INPUT ouTPUT
0O,0]0]0/10]O0
010110 0]1
o100 1|0
0|1 1101 1
170} 0]1T]0]|O0
11701 11701
1 17101 1 1
1 1 1 1 110

The analytic form of the Toffoli gate is
TOF(a,b,c) = (a,b,ab® c) Va,b,ce{0,1}

and the symbol for the Toffoli gate is

Figure 1.5: Circuit representation of Toffoli gate

The n-bit Toffoli gate is a generalization of Toffoli gate. It takes n bits xy, o, -+, z,
as inputs and outputs n bits: the first n—1 output bits are just xq,--- ,z,_1, and the last

output bit is x1x9 - 2,1 D x,,.

1.2 Universal Gates

Universal gates can be “combined” to perform “all” Boolean functions. Before talking about
the precise definition of the universality of classical logic gates, we need to introduce two
basic operations that can be easily performed by classical computers (via storing/swapping

data in the memory, maybe?).

Definition 1.3. 1. Let n,/ € N and ¢ < n. For a pairwise distinct set {ji, - ,Jj/} S

{1,--- ,n}, the restriction and/or re-ordering operation T;?;Q.__jz is a classical gate

from {0,1}" to {0,1}* given by
r§?}2~.~jl(~r17 Tt 7xn) = (levxjw T 7xj£>)

Let n,f € N. For a given point (y1,2, - ,y¢) € {0,1}* and a pairwise distinct set
(n)

o weidne o 18 & classical

{71, ,Je} < {1,2,--- ,n + ¢}, the padding operation p
gate from {0, 1} to {0, 1}"* given by

pl(jll?"':yz;jlw-,je (‘Il’ T 73:”) = (217 e azn-i-@))

where
- Lh—#{re{ji, e} | r<k} it k¢ {317]2? T 7]4})
k =
Yj, if ke {j1,72, - ,je} and k = j,..
(n)

Y1, Y31, e

y1, -,y € {0,1} at pre-determined slots jy,--- ,jo € {1,--- ,n+ (}.

In other words, the padding operation p inserts pre-determined bit values

Definition 1.4. Let {g1, 92, -, gx} be a collection of classical gates. The collection of

all gates that can be constructed from gy, g2, - -, gk, denoted by Flg1, -, gx], is the set

satisfying the following construction rules:

1.

2.

Forany 1 <j <k, gje€ Flo, -, k-

For any vy, -+ ,y, € {0,1} and pairwise distinct ji,---,j, € {1,--- ,n + £}, where

{,neN,

P s € Flgr gl

For any pairwise distinct ji, -+, j, € {1,--- , ¢}, where ,n € N and ¢ < n,

713('?}2...]‘2 € 9’[91, e 7916] .

. Compositions of elements of F[gq,- -, gx| belong to F[g1, -, gx); that is, for any

hy : {0,1}" — {0,1}™ and hy : {0, 1}*—{0,1}", we have

hlah2ey[gla“'7gk] = hlthEy[gla"wgk]'
Cartesian products of elements of % (g1, -, gx] belong to F (g1, -, gx]; that is, for
any h = (hy, -, hy) 0 {0,1}" — {0,1}" and k = (ky,--- , k) : {0,1}P — {0,1}9, we

have
h,k/‘eg[gl,"',gk] = hxkey[gla'”agk]v

where h x k : {0,1}""? — {0, 1}%7 is the Cartesian product of h and k defined by

(h X k)(z1, - Tnp)

= (hl(xlv"'axn)7"'7hM(xla"'7xn)7kl<xn+1a"'7xn+p)7"'7kQ($n+1a"'axn+p))'

Example 1.5. Let ID be classical gates given by
ID(a) = a Vae{0,1}.
Then ID(a) = AND(a,1) = (ANDo pglg)(a) which implies that
ID = AND o p{}).
Therefore, ID € % [AND].
Example 1.6. For n € N, let COPY™ be the classical gate given by
COPY™"(a) = (a, a) Vace{0,1}",.

Using the identity
(COPYW x ... x COPYW)(ay, - ,an) = (a1, a1, a9, a9, - ,an,an) Vay, -, ay € {0,1},

we find that

COPY =" :;Z) 2n—1,2,4,- 2n © COPY(I) X oo X COPY(l)
o ~ ~~ "~
n copies of COPY(!)

Therefore, COPY™ ¢ .Z[COPYW)] for all n e N.

Example 1.7. Let COPYY be classical gates given in the previous example. Then for
a,b,ce{0,1},

((ID x IDxXOR) o (ID x IDx ANDxID) o 7}, , s o (COPY") x COPY") xID)) (a, b, c)
= ((ID x IDxXOR) o (ID x IDx AND xID) o 7}, , ;) (a, @, b, b, c)
= ((ID x IDxXOR) o (ID x ID x AND xID))(a, b, a, b, c)
= (ID x IDxXOR)(a,b, AND(a,b),c) = (a,b,ab@® c) = TOF(a,b,c).

Therefore, TOF € % [ID,XOR, AND,COPY(l)]. Moreover, Example 1.5 further shows
that TOF € % [XOR, AND, COPY""]

Example 1.8. In classical complexity theory, a Boolean circuit is a finite directed acyclic
graph with AND, OR, and NOT gates. It has n input nodes, which contain the n input bits
(n = 0). The internal nodes are AND, OR, and NOT gates. In other words, a Boolean cir-
cuit is an element of .%#[AND, OR, NOT|. We note that NAND,NOR € .#[|AND, OR, NOT)]

since

NAND = NOT o AND and NOR = NOT o OR..
In the following, we “show” that
Z|AND, OR,NOT| = #|NAND]| = .#[NOR|] . (1.3)

To see this, it suffices to show that AND, OR and NOT can be constructed solely by
NAND or NOR. The AND and OR gates can be implemented using NAND or NOR by

the following logic circuit:

Desired gate NAND construction NOR construction
A
A— A—
D DD :
B
Desired gate NAND construction NOR construction

D B

al

Figure 1.6: The construction of the AND and OR gates from the NAND or NOR gates

and the NOT gate can be constructed by NAND or NOR by the following logic circuit:

Desired gate NAND construction NOR construction

AAD:FQ] Yo) Yoo

Figure 1.7: The construction of the NOT gate from the NAND or NOR gates

We also note that the XOR and XINNOR gates can be constructed from NAND or
NOR gates to construct these logic gates.

Desired gate NAND construction NOR construction

Desired gate NAND construction NOR construction

Figure 1.8: The construction of the XOR and XNOR gates from the NAND or NOR
gates

Remark 1.9. In the construction of basic logic gate using NAND or NOR, the gate
COPY" is used implicitly. In other words, to be more precise (1.3) should be written

as

Z|NAND| < .Z[AND, OR,NOT] < .Z[NAND, COPY"]
Z|NOR] < .Z|AND, OR,NOT] < .#Z|NOR, COPY"] .

The following proposition should be clear.

Proposition 1.10. Let {g1, -+ ,gx} be a collection of classical gates, and hy,--- hy €
Flog1, - ,95). Then
tg/\[hla'” 7h£] < ‘6/\[917 7.gk’]

Definition 1.11. A collection G = {g1,-- -, gr} of classical gates is said to be universal
if any gate g can be constructed with gates from G that is, {g1,---,gx} is universal if
g€ Flg1, - ,gx for every classical gate g.

Theorem 1.12. The classical TOFFOLI-gate is universal and reversible.

Proof. Since every gate g : {0,1}" — {0, 1}™ is a Cartesian product of m gates g1, 92, , gm :
{0,1}™ — {0, 1}, it suffices to show the universality only for a gate of the form f: {0,1}" —
{0, 1}, which we shall do by induction in n.

10

Before initiating the induction argument, let us first construct the AND, XOR and
COPY™ gates using the Toffoli gate. Since

TOF(a,b,0) = (a,b,ab) and TOF(l,a,b) = (1,a,a@®b) Va,be{0,1},

we find that
AND(a,b) = ab = (r§” o TOF)(a,b,0) = (r§” o TOF 0 p{3})(a,),
XOR(a,b) = a@b = (1}’ o TOF)(1,a,b) = (r}’ o TOF o p{?))(a,b)

COPY(I)(a) = (7’5332 o TOF)(a, 1,0) = (rﬁ,)) o TOF o p%;w)(a) .

Therefore, AND, XOR, COPYY € .# [TOF]. Together with Example 1.6, we also conclude
that COPY™ € .Z[TOF] for all n € N.

Now we initiate the induction process. First we need to show that TOF is universal for
gates of the form f : {0,1} — {0,1}. There are four gates in this case: the identity gate
ID, the NOT gate, the TRUE gate whose output is always 1, and the FALSE gate whose
output is always 0. Note that

TOF(1,0,a) = (1,0,a) and Tor(1,1,a) =(1,1,1®a) Vae{0,1}.

Using the identity p1 0 12(a) = (1,0, a), we obtain that

ID(a) = (7“3 o TOF)(1,0,a) = (7’3 o TOF o pglf)) 12)(a),
TRUE(a) = (r o TOF)(1,0,a) = (1Y o TOF 0 p{'}., ,)(a)
FALSE(a) = (r}” o TOF)(1,0,a) = (1’ o TOF 0 p{), ,)(a) ,
NOT(a) = (ry” o TOF)(1,1,a) = (ry” o TOF o p} | ,)(a) .

Therefore, TOF is universal for gates of the form f : {0,1} — {0,1}, and as a summary we

have

ID, FALSE, TRUE, NOT, AND, XOR, COPY"™ ¢ .Z[TOF] . (1.4)

Suppose that TOF is universal for gates of the form f : {0,1}"' — {0,1}. Let f :
{0,1}™ — {0,1} be a classical gate. Let go, g1 : {0,1}""1 — {0, 1} be classical gates given by

gO(x17“' 7xn—1):f($l>"' 7xn—170) a’nd 91(3717"' 7xn—l):f(xl7”' 7xn—171)7
and define h : {0,1}" — {0, 1} by
h(zy, - x,) = XOR(AND(gO(xl, o Xp-1), NOT(z,)), AND(gq (21, - - ,:z:n,l),;cn)) .

For a fixed Z,, = (w1, -+ ,x,_1) € {0,1}"71, there are four cases:

11

1. go(Z,) = 91(Z,) = 0: in this case

h(z1,--,2,) = XOR(AND(0,NOT(z,)), AND(0,z,,)) = 0 = f(a1,-, %)

2. 9o(Zn) = 1(Z,) = 1: in this case

h(zy,---,x,) = XOR(AND(1,NOT(z,)), AND(1,z,)) =1 = f(z1, -, 2n) .

3. go(Z,) =0 and ¢1(Z,,) = 1: in this case,

h(z1,--,z,) = XOR(AND(0,NOT(z,)), AND(1,z,)) =ID(z,) = f(z1, -, 2,).

4. go(Z,) =1 and ¢1(Z,) = 0: in this case,

h(zy,--,x,) = XOR(AND(1,NOT(z,)), AND(0, z,,)) = NOT(z,) = f(z1, -+, 2n) .

Therefore, h = f. By the induction assumption, go, g1 € % |TOF] and the fact that
f=h=XORo (AND x AND) o ((gy x NOT) x (g, x ID)) o COPY™
we conclude from (1.4) that f € #[TOF]. o

Remark 1.13. Since XOR can be constructed using NAND), by Example 1.7 we find that
TOF € ﬁ[NAND, COPY(l)} . Therefore, Theorem 1.12 and Remark 1.9 imply that

Z|TOF| = .7 [NAND, COPY""] = Z[AND, OR, NOT] .

1.3 How A Classical Computer Adds Numbers

1.3.1 Binary numbers

In a (classical) computer, each number is stored as a binary number which is a number
expressed in the base-2 numeral system. In an N-bit system, the first bit is always used to
store the information of non-negativity /negativity of the number, and the rest (N — 1) bits
are used to express the number (we will not go further into the fixed point or floating point

system).

12

Every non-negative binary number takes the form 0i,i,_1i, o ---i; (or more precisely,

(Oipin_1---11)2), where iy € {0, 1} for each k, and is the same as the number

2" Ny 2" P g e+ 20 iy =) 26, (1.5)
k=1

in the usual base-10 numeral system. For example, the number 13 in the base-10 numeral
system is expressed as 0---01101 in the base-2 numeral system.
Every negative binary number takes the form 1i,i, 17, 2---i; (or more precisely,

(Lipin_1---11)2), where i) € {0, 1} for each k, and is the same as the number

— 2" 1 —dy) = 2" 21 —dpy) — - =281 —dy) — (1 —dy) — 1= —1 — Z 2811 — i)
k=1
in the usual base-10 numeral system (here we use the two’s-complement number system -
= A% ¥,k 3b). For example, the number —13 is 1--- 10011 (which is obtained by exchanging
0 and 1 in the binary expression of 13 and the outcome plus 1 is the binary expression of
—13). We also note that the number 14,4, _1i, o ---i; is the same as —2" + 0i,4,_1 - - - 11,

where 0i,,4,_1 - - - i; denotes the number given in (1.5).

Example 1.14. Since 7 in the base-10 numeral system is the same as 0 - - - 0111 is the base-2
numeral system, the classical computers compute 7 + 13 and 7 — 13 (which is the same as
7+ (—13)) as follows:
7+13=(0---00111)3 + (0---01101)5 = (0---010100), = 2* + 2% = 20,
7+ (=13) = (0---00111)y + (1---10011)5 = (1---111010), = -2 —2° — 1 = —6.

Remark 1.15. For a non-negative integer k = (k,_1k,_o---kg)2, in matlab® k; is the
(7 + 1)-th component of the vector x given by

x = de2bi(k,n).

In other words, x given above lists the lowest bit to the highest bit of £ from left to right.

To obtain the bit expression in exactly the same order, we use the flip function so that
(kn—h kn_g, R k’o) = ﬂip(de2bi(k, TL)) .

We also remark that in matlab® the input of de2bi has to be non-negative integers (so
it will not output the bit expression of negative integer in the two’s complement number

system).

13

1.3.2 Adder using logic circuits

An adder (4vi# ®) is a digital circuit that performs addition of numbers. In many computers
and other kinds of processors adders are used in the arithmetic logic units or ALU. The

most common adders operate on binary numbers.

e Half adder (& 42 %)

The half adder adds two single binary digits A and B. It has two outputs, sum (S) and
carry (C, i&). The carry signal represents an overflow into the next digit of a multi-digit
addition. The sum of A and B is 2C + S. The truth table for the half adder is:

INPUT | OUTPUT
A | B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

The simplest half-adder design, pictured below,

A o—

C

Figure 1.9: The logic diagram of the half adder

incorporates an XOR gate (that gives a true output when the number of true inputs is
odd) for S and an AND gate for C. The Boolean logic for the sum (in this case S) will be
A'B + AB’ (which is (1 — A)B 4+ A(1 — B)) whereas for the carry (C) will be AB. The half
adder adds two input bits and generates a carry and sum, which are the two outputs of a
half adder.

e Full adder (2 4ci ®)

A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit
full-adder adds three one-bit numbers, often written as A, B, and C;,; A and B are the

operands, and Cj, is a bit carried in from the previous less-significant stage. The circuit

14

produces a two-bit output. Output carry and sum typically represented by the signals Cgyt
and S, where the sum of A and B equals 2C,,; + S. The truth table for the full adder is:

INPUT ouTPUT
A B Cin Cou‘c S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
A circuit design for the full adder is given below:
A ©
B o
Cin o °S A B
— v v
1-bit
Cout<— Full <Cin
Adder
v
S

Figure 1.10: The logic diagram of the full adder (left) and a schematic symbol for a 1-bit
full adder (right), here Cj, and Cg, drawn on sides of block to emphasize their use in a
multi-bit adder

We can create a logical circuit using multiple full adders to add N-bit numbers. Each
full adder inputs a C;,, which is the C,y; of the previous adder. This kind of adder is called
a ripple-carry adder (RCA), since each carry bit “ripples” to the next full adder. Note
that the first (and only the first) full adder may be replaced by a half adder (under the

assumption that Cy, = 0). The following figure provides a symbol for a 4-bit full adder:

Af Bf Af Blz Ail Bll Aio Elo
. B . he
«— R < Ru < Ru < Fu -
Ca | Adder | C3 | Adder | C2 | Adder | €1 | Adder | Co

i ' ' l

S3 S2 S1 So

15

here two input 4-bit numbers is A = (A3A3A1A)s, B = (B3ByB1Byg)2 and the sum of A and
B is a 5-bit number S = (C4S3525150)2-

1.4 Classical Circuits

In classical complexity theory, a Boolean circuit is a finite directed acyclic graph with AND,
OR, and NOT gates. It has n input nodes, which contain the n input bits (n = 0). The
internal nodes are AND, OR, and NOT gates, and there are one or more designated
output nodes. The initial input bits are fed into AND, OR, and NOT gates according
to the circuit, and eventually the output nodes assume some value. We say that a circuit
computes some Boolean function f : {0,1}" — {0,1}™ if the output nodes get the right
value f(x) for every input x € {0, 1}".

A circuit family is a collection C' = {C,,} of circuits, one for each input size n. Each circuit

has one output bit. Such a family recognizes or decides a language L < {0,1}* = | J {0, 1}"

n=0
if, for every n and every input = € {0, 1}", the circuit C, outputs 1 if x € L and outputs

0 otherwise. Such a circuit family is uniformly polynomial if there is a deterministic
Turing machine that outputs C,, given n as input, using space logarithmic in n. Note that
the size (number of gates) of the circuits C,, can then grow at most polynomially with n. It
is known that uniformly polynomial circuit families are equal in power to polynomial-time
deterministic Turing machines: a language L can be decided by a uniformly polynomial
circuit family L € P, where P is the class of languages decidable by polynomial-time Turing
machines. Similarly we can consider randomized circuits. These receive, in addition to the
n input bits, also some random bits (“coin flips”) as input. A randomized circuit computes
a function f if it successfully outputs the right answer f(x) with probability at least 2/3
for every x (probability taken over the values of the random bits). Randomized circuits are
equal in power to randomized Turing machines: a language L can be decided by a uniformly
polynomial randomized circuit family L € BPP, where BPP (“Bounded-error Probabilistic
Polynomial time”) is the class of languages that can efficiently be recognized by randomized
Turing machines with success probability at least 2/3. Because we can efficiently reduce
the error probability of randomzied algorithms (see Appendix B.2), the particular value 2/3

does not really matter here and may be replaced by any fixed constant in (1/2,1).

Chapter 2

Quantum Computing

Classical computers carry out logical operations using the “definite position of a physical
state” (also called classical state). These are usually binary, meaning its operations are
based on one of two positions. A single state - such as on or off, up or down, 1 or 0 - is
called a bit.

In quantum computing, operations instead use the quantum state of an object. These
states have indefinite/undetermined positions before they are measured, such as the spin of
an electron or the polarisation of a photon. Rather than having a clear position, unmeasured
quantum states occur in a mixed “superposition”, not unlike a coin spinning through the
air before it lands in your hand. These superpositions can be entangled with those of other
objects, meaning their final outcomes will be mathematically related even if we do not know
yet what they are.

In a classical computer, each number is in classical state. Call these states |1),|2),---,|N)
(here we treat |1),--- ,|N) as IV distinct outcomes but not necessarily natural numbers from

1 to N). A superposition of these states is a quantum state
) = au|1) + aa|2) + -+ + an|N),

where vy, -+, ay are complex numbers satisfying |a|? + - - - +|ax|* = 1 and this particular
quantum state, upon measurement, gives |j) with probability |a;[*. Quantum comput-
ers perform calculations based on the probability of an object’s quantum state before it
is measured - instead of just 1s or Os - which means they have the potential to process
exponentially more data compared to classical computers. Quantum computation is the
field that investigates the computational power and other properties of computers based on

quantum-mechanical principles. An important objective is to find quantum algorithms that

16

17

are significantly faster than any classical algorithm solving the same problem.

2.1 Quantum Mechanics

Here we give a brief and abstract introduction to quantum mechanics. In short: a quantum
state is a superposition of classical states, to which we can apply either a measurement or

a unitary operation.

2.1.1 Schrodinger equation

In “continuous” quantum mechanics, the Schrodinger equation for a single non-relativistic

particle with mass m is given by
L0 h . n
ih1p = (—%A+v)¢ in R x {t> 0}, (2.1)

where i ~ 1.05457181765 x 1073*J - s is the reduced Planck constant, ¢ = ¥(z,t) is the
wave function, a function that assigns a complex number to each point = at each time ¢, and
V = V(x,t) is a real-valued function, called the potential, that represents the environment
in which the particle exists. The square of the absolute value of the wave function at each
point is taken to define a probability density function: given a wave function in position
space 1(x,t) as above, the function ‘w(x, t)|2 denotes the probability density of the presence
of the particle at position x at time ¢.

Taking the complex conjugate of the Schrodinger equation (2.1), we obtain that

—m i = (—%A + v)&

thus
uw = ¢<——A+V>¢, zzw = ¢(—%A+V)&.
Therefore,

h _
TI0P = o) = o (A — FAy)

so that the divergence theorem 1mphes that

zh—f (x,t) ‘ dx = [(z,) A (z,t) — Pz,) AY(z,t)] de = 0.

R3

Therefore, f e t)‘Q dx is a constant (which is assumed to be 1 if at a certain time this
R3

18

integral is 1). This shows that the probability of the presence of a particle (whose dynamics
is described by (2.1)) at a certain point in R® is 1. The physical interpretation of this
identity is “the position at which the particle locates is in a superposition of all the points
in R3”,

On the other hand, when you try to figure out the location of the particle by implement-
ing some kind of measurements, you always obtain an unambiguous result. The outcome of
the measurement follows the probability distribution that the probability density function
!1/)(-,25)]2 provides: the probability of that the particle locations in the region R < R3 at

time ¢ is given by f W(x,t)|2 dx.
R

Definition 2.1. A quantum state is a mathematical entity that provides a probability
distribution for the outcomes of each possible measurement on a system.

2.1.2 Superposition

In quantum computing, each number is a superposition of “classical numbers”.Consider some

physical system that can be in N different, mutually exclusive classical states. Call these

states [1), |2), -+, |IV). A superposition of these states is described by the wave function
ap ifz=|1),
b(o.t) = a:2 if x =12),
ay if T =[N,
where «; is a complex number called the amplitude of |j) in |¢), and ay,-- -, an satisty

|a1|? + Jan|* + -+ - + |ay|? = 1. The wave function above is a pure quantum state (usually

just called state) and is usually written as

N
¢y = Z a;lj) = a1]l) + aa]2) + - + an[N).
j=1
Intuitively, a system in quantum state |¢) is in all classical states at the same time! It is
in state |1) with amplitude a; (and probability |a;|?), in state |2) with amplitude ay (and
probability |as|?), and so on. Mathematically, the states |1), - -+, |N) form an orthonormal
basis of an N-dimensional Hilbert space (that is, an N-dimensional vector space equipped

with an inner product), and a quantum state |¢) is a vector in this space.

19

Notation: Let (H,{:,-)) be a Hilbert space over field F. Any vectors v in H is expressed
as |v). For example, in “continuous” quantum mechanics every quantum state [¢) lives in
the Hilbert space L?(R?®). For a vector v € H, the notation (v| is an element in the dual
space of H (see Definition 3.46) satisfying (v|w) = (v, w). In other word, for each w € H,

w = av + Bvt for some a € F and (v| : w— afv|?.

2.1.3 Measurement

There are two things we can do with a quantum state: measure it or let it evolve unitarily

without measuring it. We will deal with measurement first.

e Measurement in the computational basis

Suppose we measure state |[¢p). We cannot “see” a superposition itself, but only classical
states. Accordingly, if we measure state |¢) we will see one and only one classical state
|7). Which specific |j) will we see? This is not determined in advance; the only thing
we can say is that we will see state [j) with probability |a;[?, which is the squared norm
of the corresponding amplitude a; (|a + ib| = /a2 + b2 for a,b € R). Thus observing

a quantum state induces a probability distribution on the classical states, given by the

N
squared norms of the amplitudes. This implies Y |a;|? = 1, so the vector of amplitudes has
j=1
(Euclidean) norm 1. If we measure |¢) and see classical state |j) as a result, then |¢) itself

has “disappeared”, and all that is left is [j). In other words, observing |¢) “collapses” the
quantum superposition |¢) to the classical state |j) that we saw, and all “information” that

might have been contained in the amplitudes «; is gone.

¢ Projective measurement

A somewhat more general kind of measurement than the above “measurement in the com-
putational (or standard) basis” is possible. This will be used only sparsely in the course, so
it may be skipped on a first reading. Such a projective measurement is described by projec-
tors Py, Py, --+, P, (m < N) which sum to identity. These projectors are then pairwise
orthogonal, meaning that P;P; = 0 if ¢ # j. The projector P; projects on some subspace H;
of the total Hilbert space H, and every state |¢) € H can be decomposed in a unique way as
lp) =]ZV] |9, with |¢;) = P;|¢) € H;. Because the projectors are orthogonal, the subspaces
=1

‘]:
H; are orthogonal as well, as are the states |¢;). When we apply this measurement to the

20

pure state |¢), then we will get outcome in H; with probability |||¢;)|? = tr(P;|¢){¢|) and
the state will then “collapse” to the new state |¢;)/|[|¢;)l = Pjlo)/[P;|#)].

Example 2.2. A measurement in the standard basis is the specific projective measurement

where m = N and P; = [7){j|; that is, P, projects onto the standard basis state |j) and the

N
corresponding subspace Hj; is the space spanned by [j). Consider the state |¢) = >, a;|j).

7=1
Note that P;|¢) = «;|j), so applying our measurement to |¢) will give outcome in H; with

probability |a;]7)|? = |a;]?, and in that case the state collapses to aj;‘];’ = ‘a—j‘\ﬁ The
;] Q;

il may be disregarded because it has no physical significance, so we end up

norm-1 factor
|

with the state |j) as we saw before.
Example 2.3. A measurement that distinguishes between [j) with j < 5 and [j) with
J>5 corresponds to the two projectors Py = > |j)(j] and Po = > [7){j|. Applying

JSN/2 j>N/2
this measurement to the state

1 V3 1 1
) =35I+ 7§|2>+ SN =D+ %

where N > 4, will give outcome 1 with probability |Py|¢)|? = g, in which case the state

IN),

collapses to g[lﬂ— £\2>, and will give outcome 2 with probability |Ps|¢)|* = %’ in which

case the state collapses to £|N - 1)+ \%]N>

2.1.4 Unitary evolution

Instead of measuring |¢), we can also apply some operation to it; that is, change the state

|¢) to some other state

[y =Y Bil) = Bul1) + Bal2) + - + BuIN).

Jj=1

Quantum mechanics only allows linear operations to be applied to quantum states. What

this means is: if we view a state like |¢) as an N-dimensional vector [ay,ag, -, ay|T

(sometimes called the “qubit state vector”), then applying an operation that changes |¢)

21

to [¢) corresponds to multiplying |¢) with an N x N complex-valued matrix U:

851 B
U Of2 _ 5‘2
an BN
Note that by linearity we have
N N
4 = Ulo) = U(Y aslid) = Y ;UL
j=1 j=1
Because measuring |¢) should also give a probability distribution, P we have the con-
straint ']ZV:1 |3;]* = 1. This implies that the operation U must preserve the norm of vectors,
=

and U always maps a vector of norm 1 to a vector of norm 1. Such a linear map is said to
be unitary and always has an inverse (since Uz = 0 if and only if = 0), and it follows that
any (non-measuring) operation on quantum states must be reversible: by applying U™! we
can always “undo” the action of U, and nothing is lost in the process. On the other hand, a
measurement is clearly non-reversible, because we cannot reconstruct |¢) from the observed

classical state [j).

2.2 Qubits and Quantum Gates

In the previous sections, we talked about the superposition

N
¢y = Z ajlj) = an|1) + az]2) + - + ay|N)
j=1
of N classical states. In a quantum computer, |¢) is used to expressed a random numbers.
Each such number is created using random bits, called qubits, and every qubit can be
created with different amplitude (or probability) of the 0 and 1 state. A 1-qubit state is

represented in braket notation as |¢) = a|0) + (1), and an n-qubit state is represented as

2n—1 2" —1
=Y agliy or gy =D aslinr o),
j=0 Jj=0

where (0,_1 - j1Jo)2 is the binary representation of j; that is,

F=2"" g+ 2" % o+ 2 + o

22

2.2.1 Quantum bits

Definition 2.4 (Qubits). A qubit is a quantum state with two possible outcomes of mea-

surement. A qubit is usually represented by

[¥) = al0) + B[1),

where «, 8 € C satisfying |a|? + |5 = 1. Two qubits |[11) = a;1]0) + £1]1) and [iy) =
a3]0) + B,|1) are said to be equivalent if there exists 6 € R such that (a, 82) = €?(ay, B1).

Remark 2.5. A qubit is more than a two-valued random variable.

Definition 2.6. A Bloch sphere B is a subset of C? defined by («,) € B if and only if
|a)? + |B]? = 1. Each point («,) € B is represented by

) = ei‘s(cos g|0> + €' sin g|1>> :

where 6 € [0, 7] and ¢ € [0, 27).

2.2.2 Quantum gates

A unitary transformation that acts on a small numer of qubits (say, at most 3) is often
called a gate, in analogy to classical logic gates. Two simple but important 1-qubit gates
are the bitflip-gate X (which negates the bit; that is, swaps |0) and |1)) and the phaseflip

gate Z (which puts a minus sign “—" in front of |1)). Represented as 2 x 2 unitary matrices,

X:HH and ZZH _01} (2.2)

these are

23

Remark 2.7. Let 1)) = ei‘S(cos g]O> + € sin §1>) be a 1-qubit quantum state. Then on
the Bloch sphere,

1. X]|¢) is the reflection of |¢)) (or the rotation by angel 7) about the z-axis); that is,

By ,
T 5 0 4+ e sin T

. —0 , , 0 0
— i — o(0=9) [Lid iy 2 —
X[py=re (cos 5 |1>> e (e sin 5 0> + cos 5 |1>>

, 0 , 0
= ¢!0=9) (cos —|1) + € sin —|0>) :
2 2
2. Z|1) is the reflection of |1 (or the rotation by angel) about the z-axis; that is, then
))) 0 . 0 . 0
7|y = e < cos =|0) + ™) sin —|1>> = (cos =|0) — € sin —|1>> :
2 2 2 2
Possibly the most important 1-qubit gate is the Hadamard transform, specified by:

1 1 1 1
H0)= [0+ 5 and - HD = 20~ D).

The Hadamard transform is represented as

1
=5l A

If we apply H to initial state |0) and then measure, we have equal probability of observing
|0) or |1). Similarly, applying H to |1) and observing gives equal probability of |0) or |1).
However, if we apply H to the superposition \}§|0> + \ﬁ|1> then we obtain |0): the positive
and negative amplitudes for |1) cancel out! (note that this also means that H is its own
inverse) This effect is called interference, and is analogous to interference patterns between
light or sound waves.

Let us also consider the reflection (or the rotation by angle 7) about the y-axis. This

rotation is denoted by Y and is given by

i ; 0|0> + e 9) gin © ; 9|1>

cos Q|0> + € sin Q|1> s cos
2 2
so that the matrix representation of Y is
0 —
Vel
These three gates X, Y, Z are called the Pauli gates. We note that if A and B are two
different Pauli gates, then AB + BA = 0.

24

Remark 2.8. In principle, the matrix representation of a quantum gate can differ by a
multiple of a constant whose modulus is 1 because these representations give equivalent
quantum states. We choose X, Y and Z in such a way that X? = Y? =72 =1.

In general, we can consider the rotation by angle 7 about the x-axis, y-axis and z-axis.

These rotations are denoted by R, (7), R, (7) and R,(7), respectively.

Theorem 2.9. For 7 € R, the matriz representations of R,(7), R,(7) and R.(7) are

respectively given by

T ... T T . T
COS 5 —17 81 5 COS 5 — S1n 5 e—i%
e e B ¥ IR IS RO L1 e
—1 Sln§ COS§ Sln§ COS§ €

Proof. Let |1) be a 1-qubit quantum state
1) = cos g|0> + € sin §|1>
whose coordinate on the Bloch sphere is cos ¢ sin ¢ + sin ¢ sin 65 4 cos 0k.

1. On the unit sphere, the rotation of the vector cos ¢ sin 8% + sin ¢ sin 6§ + cos 0k with

angle 7 about the z-axis is
cos ¢sin 0% + (cos Tsin ¢ sinf — sin 7 cos)7 + (sin 7sin ¢ sin 6 + cos 7 cos 0) k

where the coefficients for j and k are obtained by

cosT —sinT| |singsinf| [cosTsin¢gsing —sinTcosd
sinT cosT cos sinTsin ¢sin @ 4+ cos 7 cos |

Suppose that

cos ¢sin @i + (cos Tsin ¢ sinf — sin 7 cos0)j + (sin 7 sin ¢ sin 6 + cos 7 cos 0) k

= cos @ sin Y1 + sin p sin 95 + cos vk

for some ¢ and . Then

o 14 sinTsin¢sinf + cost cosf cos T sin ¢ sin f — sin 7 cos 0
CoS 52 5 , tanp =

. (24
cos ¢ sin 6 (24)

Next we show that R,(7) with matrix representation given by (2.3) indeed has the
property that

R. (7)) = ei‘s(cos g|0> + €' sin g]l})

25

cos~ —isin g cOoS 4
for some § € R. Expanding - - 2 g |+ it is to show that there
—ising cos e sin —

exists 0 € R such that

o . . 0 . .0 ;
oS % cos 5 + sin ¢ sin g sin 5 — 1 oS ¢ sin % sin 5 = e” cos 5 (2.5a)

T . 0 Lo T . 0 0 . 1 _i(6+p) o 0
cos¢cos§ sin 5 + z(smgbcos§ sin 5 — cos o sin 5) =e sin o (2.5b)
Since
T 0 . . T . 0\2 2 . 9oT . 9 0
§cos§+smq§smgsm§) + cos” ¢ sin” — sin” —

(COS 5 5

— cos? Ccos? & + sin? T sin? 2 T cos 2 sin ¢sin ~ sin 2

= COos 2cos 2+sm 2sm 2+2cos2008281ngz5sm2sm2

(14 cos7)(1+ cosf) + (1 —cos7)(1 — cosb) N sin ¢ sin 7 sin ¢
4 2

1 + cos 7 cos 6 4 sin ¢ sin 7 sin 6 o U

= = cos” —,
2 2

there exists 0 € R such that

: v
i0 .
COS 9

zcosg+sin¢sinzsing—icosgbsinzsing—e cos
22 2772 272 ’
thus (2.5a) holds. Moreover, by the fact that R,(7) given by (2.3) is unitary, (2.5a)

implies that
) cos ¢ cos — sin o + i(sin ¢ cos T sin b_ Ccos o sin z) = sin® — (2.6)
2 2 2 2 2 2
Therefore, to show (2.5b) it suffices to extract the phase information. Computing the
product of the left-hand side of (2.5b) and the complex conjugate of (2.5a), we obtain
that

(coszcosg—l—sinqﬁsinzsing +icos¢sinzsing)x
2 2 2 2 2 2

X [cosqbcoszsing —l—i(sinqbcoszsing —cosgsinz)]
2 2 2 2 2 2

_ 27 sin ¥ cos? in2 T sin & cos 2
= CO0s ¢ cos 2sm2cos2—l—cos¢sm 5 S 5 cos o
0 0 0
+i[6082¢sin2§sin%cos%+sin2¢sin2§singcos%—0082§sin%cos%
0 0 0 0
+Singbcoszgsin§cos§—sinqﬁsinzgsinécos 5}

1
3 [cos¢sinf +i(— cosfsinT + sin ¢ cos 7 sinf)] .
Identity (2.4) then shows that (2.5b) holds.

26

2. The proof of this part is similar to the one in the first part, and the proof is left to

the readers.

3. It is clear that R, (7) maps |¢) to the quantum state cos g]O> + €/@+7) gin g]1> There-

fore, the matrix representations of R,(7) is given by

For a 2 x 2 matrix A (with complex entries) satisfying A% = I, one has

0 - w0 . 0 .
(ZASC)k z%AQkak 22k+1A2k+1x2k+1

1Az
p— pr— — +
‘ ;} Kl ,;) Bl AT 2kt)
o0 e0]
(_1)kx2k . (_l)kx%—&-l o
— 2 —1—1-22 ———— A =coszl +isinzA.
O P T

Using the notation of exponential, we find the matrix representation of R,(7), R,(7) and

R.(7) given in (2.3) in fact can be expressed as

—iTX)

—Z'TY)
2)

R.(7) = exp (5

Ry(7) = exp (
Before proceeding, we note that for a unit vector a = (a,, ay,a,) in R3,

(X + a,Y + a,Z)?
= a2X? + a2 Y? + a27% + apay (XY + YX) + a,0.(XZ + ZX) + aya,(YZ + ZY)
= (a+a,+a2)=1.

Definition 2.10. For a general unit vector a = (a,, a,,a,) in R?, the rotation of an 1-qubit
state with angle ¢ about an axis in direction a, denoted by R4(¢), is a 1-qubit quantum

gate given by

Ra(¢) = exp (—%(%X +a,Y + aZZ)> = cos %SI — ¢sin %(%X +a,Y +a,Z).

The matrix representation of R,(¢) is given by

R N)
cos — —ia,sin - —(a, + ia,)sin -
Ra(¢) = 2 2 Y 21 (2.8)

N) ¢ . . P
(ay—wgg)sm§ cos o + ia, sin 5

27

We will see gates acting on more than one qubit later.

l GATE MODEL '

OR CIRCUIT MODEL

QUANTUM COMPUTING L

WITH EACH OTHER

Figure 2.1: Gate model or circuit model of quantum computing - it consists of a lot of qubits,
each qubit represents a digit of a number, and qubits are manipulated using quantum gates.

2.3 Quantum Registers

A quantum register is a system comprising multiple qubits. It is the quantum analog of
the classical processor register. Quantum computers perform calculations by manipulating

qubits within a quantum register.

Remark 2.11. There is a conceptual difference between the quantum and classical register.
A classical register of n bits refers to an array of n flip flops (flip flops - ¥ & 4 & 0 & 1

7 B4, while a quantum register of n qubits is merely a collection of n qubits.

Classically, information is represented by finite chunks of bits - such as bytes - and
multiples thereof. These are essentially words (z1,xs, 23, -+ ,2,) built from the alphabet
{0, 1}; that is, z, € {0, 1} for all 1 < ¢ < n. Hence, we need 2" classical storage configurations
in order to represent all such words.

A classical two-bit word (xy,) is an element of the set {0,1} x {0,1} = {0,1}?, and
classically we can represent the words 00, 01, 10, 11 by storing the first letter 21 (the first bit
or the highest bit) and the second letter x5 (the second bit) accordingly. If we represent each
of these bits quantum mechanically by qubits, we are dealing with a two-qubit quantum
system composed of two quantum mechanical sub-systems. A two-qubit word in a two-quit

quantum system is in superposition

Oé()|00> + 011|01> + 042|10> + 013|11>, Qp, 01, g, X3 € (C, ‘Oé()|2 + |Oé1|2 + |a2|2 + |043|2 =1 s

28

where |z125) denotes the state that the first qubit is in state |z;) and the second qubit is in
state |z).

More generally, a quantum register of n qubits has 2" basis states of the form |b1bs - - - by,).
We will often abbreviate 0---0 to 0™ (so that |0") = |0---0)). Since bitstrings of length
n can be viewed as numbers between 0 and 2"—1, we can also write the basis states as
numbers |0), |1), |2), ---, |2"—1). In other words, for b = biby---b, € {0,1}" we often
use |012"7 1 4+ 0272 + -+ - + b, to identify |byby - - - b,) (byby - -+ by, in binary equals b2 +

092" 2 + -+ + b, in decimal). A quantum register of n qubits can be in any superposition

2" —1 2" —1
|0y + 1|1y + - a2 = 1y = Yyl D oyl =
3=0 =0

The superposition above sometimes is also written as >, «;[j).
je{0,1}»
In an n-qubit quantum system, one can perform measurement on certain qubits. A

measuement of m qubits, where m < n, is a projective measurement, and the quantum

register

a0y + g1y + -+ agn 1|27 — 1)

under such a projective measurement collapses to another quantum register

Bol0) + Bi[1) 4 -+ 4 Bon 1 |2" — 1),

where at most 2"~™ j;’s are non-zero, and By, 31, - - - , Bon_1 are determined by the outcomes
of the measurement, the exact position of the qubits on which measurement is performed,
and g, aq, -+ ,a9m_1. For example, if we perform a measurement on the second qubit of

the 3-qubit register
@|000) + 1]001) + 2]010) + a3|011) 4+ a4|100) 4 a5/101) + a6|110) + a7|111)
and obtain value 0, then the 3-qubit register above collapses to the quantum register

\000>+ yoo1>+ \100>+ |1o1>

where [= v/Jaol? + |on]? + oul? + Jas .

29

2.3.1 Tensor product of quantum registers - preview

Suppose that two single qubit states [1);) = ap|0) + a1|1) and |[¢h2) = [o|0) + f1]1) are given,
and a quantum register of two qubits is formed from these two single qubits: the output
of the first and the second qubit of the quantum register upon measurement follows the
distribution given by states [¢)1) and [iy), respectively. This means that when measuring
this particular quantum register, the first qubit outputs |0 or |1) with probability |a;|? or
|31|%, while the second qubit outputs respectively |0) or |1) with probability |as|* or |Ss|?,
respectively. Therefore, measuring this quantum register of two qubits gives [00), |01), |10)
and |11) with probability |cofBo|?, |coB1]?, |a1fo]? and |ay B1]?, respectively. This motivates

us to consider the quantum state of two qubits

1) = apfo]00) + apB1|01) + a1 5o[10) + iy f1[11) .

We will write the quantum state [¢)) above as |¢1)® |1)s), called the tensor product of states
|th1) and [1hy). The detail explanation of the tensor product is given in Section 3.7.

In general, let |¢)1) and [1)5) be two quantum states of n qubits and m qubits, respectively.
The tensor product of |11) and |¢)9) is a quantum state of (n+m) qubits. Let us first consider
the “continuous” case to illustrate the idea of the tensor product. Suppose that the states
of two non-relativistic particles of the same mass m, labeled as particle 1 and particle 2, are

described by Schrodinger equations

L0 h . n

i<t = (—%A v V1>¢1 in R"x {t > 0}
and 5 "

i<ty = <—%A n w)wz in R"x {t> 0},
respectively. Then at time t the probability of the presence of particle 1 at location x and
particle 2 at location y is given by ’@/)1 (x, t)‘ng(y,t)‘Q = ‘@Dl (x, t)wg(y,t)|2. This motivates
of considering the function ¥ (x,y,t) = 11 (x,t)2(y,t). This function 1) satisfies

0 h
méw - (—%AJrv)w in R x R" x {t > 0},
where V(z,y,t) = Vi(z,t) + Va(y, t) and
(Aw)(l‘7 Y, t) = (ACC + Ay)¢(xa Y, t) = 1/}2(:% t)A:ci/h(x; t) + ¢1 (1}7 t)Ay¢2(ya t) .

If there is no interference between the two particles (which is the case if V; and V5 satisfy

certain conditions), then the state of the “combined system” (meaning that we use (x,y) €

30

R™ x R™ to write the position of these two particles) is described by the wave function :
the probability of the presence of the combined system at location (z,y) at time ¢ is given
by W(x,y, t)‘2 = ‘wl(x,t)mwg(y,t)‘z. In other words, the state of the combined system is
simply the “product” (which is exactly the tensor product) of the individual states.

Now suppose the states of two qubits are given by [¢1) = ap|0) + a1|1) and |¢y) =
Bol0) + B1|1). Recall that this is a shorthand notation for the quantum states

ifxo =0,
and %(i’f'z):{ g[l) if I’Zzl

Qaq ifJ?l:l,

1/}1(1'1):{ (7)) ifm1:0,

Then the state of the combined system (which can be used to describe for random numbers
(0)10 = (00)2, (1)10 = (01)2, (2)10 = (10)2 and (3)10 = (11),, where 1), is the state of the
first bit and 15 is the state of the second bit) is given by

aofo %f (z1,22) = (0,0),
Bl aa) = afeinlan) = {00 Bl = (00
Oflﬁl if (1'1,1'2) = (1,1)7

which is abbreviated as

1) = a0Bo|00) + aB1|01) + a1 fo[10) + i Bi[11) .
In general, if
1) = ao|0) + ai|1) + - + a4 [2" = 1)

and
[V2) = Bol0) + B1|1) + -+ 4 Bam_1[2™ = 1)

are two quantum states, then

) = 1) ® [z) = (2 alky) @ (Wjﬁm) - 2 Qmjamw@ 03

where by writing k= (klk’g s k’n)g and ¢ = (6162 s 'ém)Q,

Sometimes [1)1) ® [1)9) is written as |¢y)[1)s).

31

2.3.2 Entanglement

An important property that deserves to be mentioned is entanglement, which refers to
quantum correlations between different qubits. For instance, consider a 2-qubit register
that is in the state

1 1
00+ 5.

Such 2-qubit states are sometimes called EPR-pairs in honor of Einstein, Podolsky, and
Rosen, who first examined such states and their seemingly paradoxical properties. Initially
neither of the two qubits has a classical value |0) or |1). However, if we measure the first
qubit and observe, say, a |0), then the whole state collapses to |00). Thus observing the
first qubit immediately fixes also the second, unobserved qubit to a classical value. Since
the two qubits that make up the register may be far apart, this example illustrates some of
the non-local effects that quantum systems can exhibit. In general, a bipartite state |¢) is
called entangled if it cannot be written as a tensor product |¢4) ® |¢pp), where |¢4) lives in
the first space and |¢p) lives in the second.

At this point, a comparison with classical probability distributions may be helpful. Sup-
pose we have two probability spaces, A and B, the first with 2" possible outcomes, the
second with 2™ possible outcomes. A distribution on the first space can be described by
2" parameters (non-negative reals summing to 1; actually there are only 2"—1 degrees of
freedom here) and a distribution on the second by 2™ parameters. Accordingly, a product
distribution on the joint space can be described by 2" + 2™ parameters. However, an ar-
bitrary (non-product) distribution on the joint space takes 2"™™ numbers, since there are
2"t ™M possible outcomes in total. Analogously, an n-qubit state |¢4) can be described by
2™ parameters (complex numbers whose squared moduli sum to 1), an m-qubit state |¢g)
by 2™ parameters, and their tensor product |¢4) ® |¢p) by 2" + 2™ parameters. However,
an arbitrary (possibly entangled) state in the joint space takes 2™ numbers, since it lives
in a 2"t™-dimensional space. We see that the number of parameters required to describe
quantum states is the same as the number of parameters needed to describe probability dis-
tributions. Also note the analogy between statistical independence of two random variables
A and B and non-entanglement of the product state |¢4)® |¢pp). However, despite the simi-
larities between probabilities and amplitudes, quantum states are much more powerful than
distributions, because amplitudes may have negative parts which can lead to interference

effects. Amplitudes only become probabilities when we square them. The art of quantum

32

computing is to use these special properties for interesting computational purposes.

2.4 Quantum Circuits

A quantum circuit (also called quantum network or quantum gate array) generalizes the
idea of classical circuit families, replacing the AND, OR, and NOT gates by elementary
quantum gates. A quantum gate is a unitary transformation on a small (usually 1, 2, or 3)
number of qubits. We saw a number of examples already in Section 2.2: the bitflip-gate X,
the phaseflip gate Z, the Hadamard gate H. Mathematically, these gates can be composed
by taking tensor products (if gates are applied in parallel to different parts of the register)
and ordinary products (if gates are applied sequentially). Simple examples of such circuits
of elementary gates are given in the next section.

For example, if we apply the Hadamard gate H to each bit in a register of n zeroes,

we obtain —— > [j) which is a superposition of all n-bit strings. More generally, if we

V2" jefoyn

apply H®" to an initial state i), with ¢ € {0,1}", we obtain

HE"|j) =

D 0, (2.9)

je{o, 13

n

n

where 1ej = > iyji denotes the bitwise product of the n-bit strings i,57 € {0,1}". For
k=1

instance,

1201 = (o)) o (1)) = L 0 LY] X 0,

The n-fold Hadamard transform H®" will be very useful for all the quantum algorithms
explained later.

Another important 1-qubit gate is the phase gate R, which merely rotates the phase of
the |1)-state by an angle ¢:

Ry[0)=10> and Ry|l) =e”[1).

This corresponds to the unitary matrix

33

An example of a 2-qubit gate is the controlled-not gate CNOT. It negates the second
bit of its input if the first bit is 1, and does nothing if first bit is 0:

CNOT|ab) = |a) ® |[a D b) Va,be{0,1}.

In matrix form, it is

1000
0100
CNOT=10 001
0010

More generally, if U is some 1-qubit gate, then the 2-qubit controlled-U gate given by
|0b) — |[0b) and |1b) — [1)® U|b) Vbe {0,1}

corresponds to the following 4 x 4 unitary matrix:

10 0 0
01 0 O
0 0 U1 U2
00 Ug1 U222

Adding another control register to CNOT, we get the 3-qubit Toffoli gate, also called
controlled-controlled-not (CCNOT) gate. This negates the third bit of its input if both of
the first two bits are 1 so that

CCNOT|abc) = |aby ® |ab® ¢) Va,b,ce{0,1}
or more precise,
CCNOT(aO\OOO> + a1]001) + a3]010) + a3]011) + ay[100) + a5[101) + c[110) + 047|111>)
= @|000) + 1|001) + a2|010) + 3|011) + 4|100) + a5|101) + ag|111) + a;[110)
which shows that CCINOTrelative to the basis
{/000), |001), |010),]011),[100), |101), |110),[111)}

has the matrix form

CCNOT =

SO DO DO O OO
(>l oo NoBoll e
SO OO O+ OO
SO oo+, O oo
S OO, OO oo
SO R OO o oo
— o O O o o oo
O —R O O O o oo

34

The Toffoli gate is important because it is complete for classical reversible computation: any
classical computation can be implemented by a circuit of Toffoli gates.

A quantum circuit is a finite directed acyclic graph of input nodes, gates, and output
nodes. There are n nodes that contain the input; in addition we may have some more input
nodes that are initially |0) (“workspace”). The internal nodes of the quantum circuit are
quantum gates that each operate on at most 2 qubits of the state. The gates in the circuit
transform the initial state vector into a final state, which will generally be a superposition.
We measure some dedicated output bits of this final state to (probabilistically) obtain an
answer.

To draw such circuits, we typically let time progress from left to right: we start with the
initial state on the left. Each qubit is pictured as a wire, and the circuit prescribes which
gates are to be applied to which wires. Single-qubit gates like X and H just act on one wire,
while multi-qubit gates such as the CNOT act on multiple wires simultaneously. When
one qubit “controls” the application of a gate to another qubit, then the controlling wire
is drawn with a dot linked vertically to the gate that is applied to the target qubit. This
happens for instance with the CNOT, where the applied single-qubit gate is X (sometimes
drawn as ‘@’). Figure 2.1 gives a simple example on two qubits, initially in basis state |00):
first apply the Hadamard gate H to the first qubit, then CNOT to both qubits (with the
first qubit acting as the control), and then Z to the last qubit.

0) —H

0) S Z—

Figure 2.2: Simple circuit for turning |00) into an entangled state
Let A® B denote the map defined by (A® B)(|a)® |b)) = (Ala)) ® (B|b)). Then

CNOT 1

ey 1oy = L N
|00>1®z 10>® 10) ﬁ(|00>+|10>) 1 ﬁ(|00>+|11>) 2.10)
= 510820 + 1D @ Z[1) = —(00) - [11)).

Therefore, the resulting state of the circuit given in Figure 2.2 is \}5(|00> — [11)).

Note that if we have a circuit for unitary U, it is very easy to find a circuit for the inverse
U~! with the same complexity: just reverse the order of the gates, and take the inverse of
each gate. For example, if U = U,UyUs, then U™! = Uy U, U

35

Example 2.12. One possible implementation of a 2-bit full adder (using CNOT gates and
TOFFOLI gates):

qo0

¢ © &
q2 S

43 — ©

Figure 2.3: Circuit diagram of a quantum full adder

where the inputs are ¢q9 = A, ¢¢ = B, ¢ = Cj,, and the ouputs are ¢qg = A, ¢ = B,
g2 = SuMgyg, g3 = Cout-

The validity of that the quantum circuit above is indeed a full adder can be verified by
the following truth table:

INPUT ouTPUT
g3 q2 a1 do qs q2 Q1 q0

Cin B A Cout S B A
0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 1 1 0
0 1 1 0 1 0 1 0
0 0 0 1 0 1 0 1
0 1 0 1 1 0 0 1
0 0 1 1 1 1 0 1
0 1 1 1 1 1 1 1

2.4.1 Quantum Teleportation

As an example of the use of elementary gates, we will explain teleportation. Suppose there
are two parties, Alice and Bob. Alice has a qubit ag|0) + a4|1) that she wants to send to
Bob via a classical channel. Without further resources this would be impossible, but Alice
also shares an EPR-pair
1
\/—§(|00> + |11))

with Bob (say Alice holds the first qubit and Bob the second). Initially, their joint state is

1
75

« (05}

(a0|0>+a1|1>)® 7

(]00y + [11)) = —=(|000) + [011)) 4+ —=(]100) + |111)) .

cE

2

36

The first two qubits belong to Alice, the third to Bob. Alice performs a CNOT on her two
qubits to obtain

7§(|000> + [011)) + \—@(|110> + [101))

and then a Hadamard transform on her first qubit so that their joint state now becomes

S0+ 1) @ (100) + 1) | + S (1) = 1) ® (110) + Jo1))|
= 57(000) + [011) + [100) + [111)) + Z-(010) +[001) - [110) — [101))

= 2100)® (a0l0) + au] 1)) + 5101 ® (a0]1) + 01 [0)) + £ [10)® (ac]0) — 1)
+%]11>®(a0\1>—a1\0>).

Alice then measures her two qubits in the computational basis and sends the result b;by, a 2
random classical bits, to Bob over a classical channel. In order to recover Alice’s qubit, Bob
applies the transformation Z"*X%, where X is the bitflip-gate and Z is the phaseflip gate
given by (2.2), to the qubit he has now (once Alice makes a measurement, the 3 qubit Bob
has collapses to a qubit). For example, if Alice sent 11 to Bob over a classical channel, Bob
then applies ZX to the qubit ag|1) —a4|0) (which is the qubit Bob has now since Alice’s two
qubits has been measured) and obtain ay|0) + a;|1) which is the qubit Alice has originally.
In fact, if Alice’s qubit had been entangled with other qubits, then teleportation preserves
this entanglement: Bob then receives a qubit that is entangled in the same way as Alice’s
original qubit was.

Note that the qubit on Alice’s side has been destroyed: teleporting moves a qubit from
A to B, rather than copying it. In fact, copying an unknown qubit is impossible. This can
be seen as follows. Suppose C' were a 1-qubit copier; that is, C|¢)|0) = |¢)|¢) for every
qubit |¢). In particular, C'|0)|0) = [0>|0) and C|1)|0) = |1)|1). But then C' would not copy

|o) = H|0) = \}5 (|0) + [1)) correctly, since by linearity
b b
V2 V2

Remark 2.13. The fact that copying an unknown qubit is impossible implies that not all

C1$)[0) = —=(C10)[0) + C[1)[0)) = —=(10)[0) + [1)[1)) # [$)]¢) -

the Boolean function can be implemented by current quantum computers. The lack of the
ability of performing all Boolean functions will put a lot of constraints to the use of quantum

computers.

37

2.5 Universality of Various Sets of Elementary Gates

Similar to Definition 1.4 and 1.11, we have the following

Definition 2.14. Let {Uy,---, Ui} be a collection of quantum gates, where each U; is an
nj-qubit quantum gate for some n; € N. The collection of all quantum gates that can
be constructed from Uy, Uy, ---, Uy, denoted by F[Uy,--- U], is the set satisfying the

following construction rules:
1. Forany 1 <j <k, U;e F[Uy,---,Ul.
2. For any n e N, 18" € Z[Uy,--- , U], where 1 denotes the identity gate.
3. For any n-qubit quantum gates V;, V5, we have

‘/Ea%e’g:[Ulv"'aUk} = %%GE[UIU]&]

4. For any two quantum gates V7, V5, we have
Vi,2Voe F[Uy, -, U] = Vi®Vye F|Uy, - ,Ul.

A collection of quantum gates U = {Uy,--- , U} is called universal if any quantum gate U
can be constructed with gates from U; that is, for every quantum gate U, U € F[Uy, - -+, Ug].

Similar to Proposition 1.10, we have the following
Proposition 2.15. For quantum gates Vy,--- ,Vy, Uy,--- , U, we have

Vi, Vie FIUy,--- U] = F[W, -, Vi< FU,-- Uy

In particular, F L?[Ul, cee UkH = FUy, - Ul

Which set of elementary gates should we allow? There are several reasonable choices.

(1) The set of all 1-qubit operations together with the 2-qubit CNOT gate is universal,

meaning that any other unitary transformation can be built from these gates.

Allowing all 1-qubit gates is not very realistic from an implementational point of view, as
there are uncountably many of them. However, the model is usually restricted, only allowing
a small finite set of 1-qubit gates from which all other 1-qubit gates can be efficiently

approximated.

38

Theorem 2.16 (Solovay-Kitaev). Let G be a finite set of elements in SU(2) containing its
own inverses and such that the group {(G) they generate is dense in SU(2). There exists
¢ > 0 such that for any e > 0 and U € SU(2), there is a sequence S of gates from G of length
O(log®(1/e)) such that |S —U|| < e.

(2) The set consisting of CNOT, Hadamard, and the phase-gate Rx is universal in the
sense of approximation, meaning that any other unitary can be arbitrarily well ap-
proximated using circuits of only these gates. The Solovay-Kitaev Theorem says that
this approximation is quite efficient: we can approximate any gate on 1 or 2 qubits
up to error ¢ using polylog(1/e) gates from our small set; in particular, simulating

arbitrary gates up to exponentially small error costs only a polynomial overhead.
(3) The set of Hadamard H, CNOT, R,(7), R,(7) (for all 7 € R) and SWAP is universal.

It is often convenient to restrict to real numbers and use an even smaller set of gates:

(4) The set of Hadamard and Toffoli (CCNOT) is universal for all unitaries with real
entries in the sense of approximation, meaning that any unitary with only real entries
can be arbitrarily well approximated using circuits of only these gates (again the

Solovay-Kitaev Theorem says that this simulation can be done efficiently).

2.6 Quantum Parallelism

One uniquely quantum-mechanical effect that we can use for building quantum algorithms
is quantum parallelism. Suppose we can build a quantum circuit to represent a boolean
function f : {0,1}" — {0,1}™. Then we can build a quantum circuit U that maps |z)|0) —
|2)| f(z)) for every x € {0,1}". Now suppose we apply U to a superposition of all inputs z:

1 1
Ul & D) - 7 > DIf).

ze{0,1}" ze{0,1}m

We applied U just once, but the final superposition contains f(x) for all 2" input values x!
However, by itself this is not very useful and does not give more than classical randomization,
since observing the final superposition will give just one random |x)|f(z)) and all other
information will be lost. As we will see below, quantum parallelism needs to be combined
with the effects of interference and entanglement in order to get something that is better

than classical.

39

2.7 The Early Algorithms

The two best-known successes of quantum algorithm so far are Shor’s factoring algorithm
from 1994 and Grover’s search algorithm from 1996, which will be explained in later chapters.
In this section we describe some of the earlier quantum algorithms that preceded Shor’s and
Grover’s. Virtually all quantum algorithms work with queries in some form or other. We
will explain this model here. It may look contrived at first, but eventually will lead smoothly
to Shor’s and Grover’s algorithm.

To explain the query setting, consider an N-bit input = (xg, 21, - ,xn_1) € {0, 1}".
Usually we will have N = 2", so that we can address bit z; using an n-bit index i € {0, 1}".
One can think of the input as an N-bit memory which we can access at any point of our
choice (a Random Access Memory). A memory access is via a so-called “black-box”, which
is equipped to output the bit xz; on input 7. As a quantum operation, this would be the

following unitary mapping on n + 1 qubits:
Oz« [|0) = [ip]x:).

The first n qubits of the state are called the address bits (or address register), while the
(n 4+ 1)-th qubit is called the target bit. Since this operation must be unitary, we also have
to specify what happens if the initial value of the target bit is 1. Therefore we actually let

O, be the following unitary transformation:
Oz« [)[b) = [DIb D i),

here i € {0,1}", b € {0,1}, and @ denotes exclusive-or (addition modulo 2). In matrix
representation, O, is now a permutation matrix and hence unitary. Note also that a quantum
computer can apply O, on a superposition of various i, something a classical computer
cannot do. One application of this black-box is called a query, and counting the required
number of queries to compute this or that function of x is something we will do a lot in the
first half of these notes.

Given the ability to make a query of the above type, we can also make a query of the
form |i) — (—1)%|i) by setting the target bit to the state |—) = H|1) = \;5(\0> —|1)):

Oulll-)) = il = [1 =) = (~1)[i)]-

This +-kind of query puts the output variable in the phase of the state: if x; is 1 then we get
a —1 in the phase of basis state |¢); if z; = 0 then nothing happens to |i). This “phase-oracle”

40

is sometimes more convenient than the standard type of query. We sometimes denote the

corresponding n-qubit unitary transformation (ignoring the last qubit |—)) by O, 4.

2.7.1 Deutsch-Jozsa

Deutsch-Jozsa problem: For N = 2", we are given z € {0, 1} such that either
1. all z; have the same value (“constant”), or
2. N/2 of the x; are 0 and N /2 are 1 (“balanced”).

The goal is to find out whether z is constant or balanced.

The algorithm of Deutsch and Jozsa is as follows. We start in the n-qubit zero state [0"),
apply a Hadamard transform to each qubit, apply a query (in its +-form), apply another
Hadamard to each qubit, and then measure the final state. As a unitary transformation,
the algorithm would be H®"O,H®". We have drawn the corresponding quantum circuit in

Figure 2.4 (where time progresses from left to right).

0) q4H—~ HMHHM—A

oo HeHA~

o {aH HEHZ
O, 0) | H Ozt FHH -4

oo HEHA

) Hf— A HAA

1) — H —

Figure 2.4: The Deutsch-Jozsa algorithm for n = 3. Left - the usual way of drawing the
circuit (a circuit with the target qubit). Right - Only care about the first n qubits.

Let us follow the state through these operations. Initially we have the state |0™). Using
(2.9), after the first Hadamard transforms we have obtained the uniform superposition of

all 4:

The O4-query turns this into

41

Applying the second batch of Hadamards gives (again by Equation (2.9)) the final superpo-

o 2 Y (1,

ie{0,1}" je{o,1}n

sition

where iej = Y] i1jx is the bitwise dot product of ¢ and j as before. Since ie 0™ = 0 for all
k=1
i€ {0,1}", we see that the amplitude of the |0™)-state in the final superposition is

1 1 ifx; =0 for all 7,
— Z (-1)%"" =< —1 ifzg; =1forallq,
ie{0,1}n 0 if z is balanced .

Hence the final observation will yield |0") if z is constant and will yield some other state if
x is balanced. Accordingly, the Deutsch-Jozsa problem can be solved with certainty using
only 1 quantum query and O(n) other operations (the original solution of Deutsch and
Jozsa used 2 queries, the 1-query solution is from [24]). In contrast, it is easy to see that
any classical deterministic algorithm needs N/2 + 1 queries in the worst case scenario: if
it has made only N /2 queries and seen only 0s, the correct output is still undetermined.
However, a classical algorithm can solve this problem efficiently if we allow a small error
probability: just query x at two random positions, output “constant” if those bits are the
same and “balanced” if they are different. This algorithm outputs the correct answer with
probability 1 if z is constant and outputs the correct answer with probability 1/2 if x is
balanced. Thus the quantum-classical separation of this problem only holds if we consider

algorithms without error probability.

Remark 2.17. In a lot of literatures, the Deutsch-Jozsa problem is formulated as: Let
f:4{0,1}" — {0,1} satisfy either f is a constant function or #f ~1({0}) = #f ~1({1}) = 2"!
(such f issaid to be balanced). Determine if f is constant or balanced. In such a case, the O,
operator is usually denoted by Uy, and the quantum circuit for the Deutsch-Jozsa algorithm

is usually drawn as

o) e

HO"

—~

8
8

Uy
1) H y v f @)

Figure 2.5: Another way of drawing the quantum circuit for the Deutsch-Jozsa algorithm

42

Remark 2.18. In general it is not easy to construct a quantum circuit for the oracle Uy;
however, for some specific f a quantum implementation of Uy is possible. For example, let
f:{0,1}* — {0,1} be given by f(z) = z, if x = (21, - ,x,); that is, the value of f is
identical to the lowest digits of the input. Then Uy = I,_; ® CNOT, where I,,_; is the
identity map on (n — 1) qubit system, since
(I-1 ® CNOT)(|z)|y)) = (In-1 ® CNOT)(|z1 - - - Tp—120)[y))
= (Lio1 ® CNOT) (|21 -~ wn-)|2ny)) = (Lima|21 -+~ 20-1)) ® (CNOT(|2n)[y)))
= o1z Dby @ 20 = [-l ®2) = [Dly @ (2

Therefore, Uy can be implemented by the following quantum circuit

(1 T =
|xn>—}m U, x{— =

ly) —v v f @) —

al

Figure 2.6: A quantum circuit for Uy with f(z1,--- ,2,) = 2,

2.7.2 Bernstein-Vazirani

Bernstein-Vazirani problem: For N = 2", we are given x € {0, 1}" with the property
that there is some unknown a € {0, 1}” such that x; = (i ea) mod 2. The goal is to find a.

The Bernstein-Vazirani algorithm is exactly the same as the Deutsch-Jozsa algorithm,
but now the final observation miraculously yields a. Since (—1)% = (—1)(i®@)med2 —
(—1)"**, we can write the state obtained after the query as:

= 2 (D=).

ie{0,1}n i€{0,1}n

Applying a Hadamard to each qubit will turn this into the classical state |a) and hence solves
the problem with 1 query and O(n) other operations. In contrast, any classical algorithm
(even a randomized one with small error probability) needs to ask n queries for information-
theoretic reasons: the final answer consists of n bits and one classical query gives at most 1
bit of information. Bernstein and Vazirani also defined a recursive version of this problem,
which can be solved exactly by a quantum algorithm in poly(n) steps, but for which any

classical randomized algorithm needs n21°8™ steps.

Chapter 3

Mathematical Backgrounds

3.1 Vector Spaces and Linear Maps

3.1.1 Vector Spaces

Definition 3.1. A wvector space V over a scalar field F is a set of elements called vectors,
with given operations of vector addition 4 : VxV — V and scalar multiplication - : FxV —
V such that

l. v+ w=w+ v forall v,weV.

2. (v+w)+u=v+ (u+ w) for all u,v,weV.

3. there exists 0, the zero vector, such that v+ 0 = v for all ve V.
4. for each v e V there exists w € V such that v+ w = 0.

5 A-(v+w)=A-v+A-wforall \eF and v,we V.

6. A +p)-v=A-v+pu-vforall \,peFand veV.

7. A-p)-v=A(p-v) foral \,peFand ve V.

8 l-v=wvforall veV.

Remark 3.2. In property 4 of the definition above, it is easy to see that for each v, there
is only one vector w such that v + w = 0. We often denote this w by —wv, and the vector

substraction — : V x V — V is then defined (or understood) as v — w = v+ (—w).

43

44

Example 3.3. Let F be a scalar field. The space " is the collection of n-tuple v =

(V1,Va, -+ ,vy,) with v; € F with addition + and scalar multiplication - defined by
(Vl’... 7VTL>+(W17 ’Wn) = (V1+W17 7VTL+WH)7
a(vy, o, vy) = (avy, - avy,) .

Then F™ is a vector space over F.

Example 3.4. Let F be a scalar field. The collection of m x n matrices with entries in F is
denoted by M(m,n;F) or F™*™; that is, A € M(m,n;F) if and only if A = [a;;]1<i<m.1<j<n

)

for some a;; € F. Define the addition + and scalar multiplication - on M(m,n;F) by
A+ B = [a;j + by] if A= Ja;] and B = [b;;]
and
c-A=lcal if A=layl.
Then (M(m,n;F), +,-) is a vector space over F.

Example 3.5. Let F = R or C, and V be the collection of all real-valued continuous

functions on [0, 1]. The vector addition + and scalar multiplication - is defined by

(f+9)(x) = f(z) +g(x) VfgeV,
(- f)(z) =af(z) VieV,aeF.

Then V is a vector space over F, and is denoted by € ([0, 1]; F). When the scalar field under

consideration is clear, we simply use ([0, 1]) to denote this vector space.

Definition 3.6 (Vector subspace). Let V be a vector space over scalar field F. A subset

W < V is called a vector subspace of V if itself is a vector space over F.

Definition 3.7. Let V be a vector space over a scalar field F. k vectors vy, vo, -+, vy in V
is said to be linearly dependent if there exists (ay,---,ay) € F¥, (ay, -+,) # 0 such
that ayvy + avvy + -+ + apvp = 0. k vectors vy, vg, -+, v in V is said to be linearly
independent if they are not linearly dependent. In other words, {v;,--- , vy} are linearly

independent if

QU] + e + -+ v =0 = a1 =0y =---=aq=0.

45

Example 3.8. The k vectors {1,z,2% -+ ,2%7!} are linearly independent in €([0,1]) for
all k e N.

Definition 3.9. The dimension of a vector space V is the number of maximum linearly
independent set in V, and in such case V is called an n-dimensional vector space, where n
is the dimension of V. If for every number n € N there exists n linearly independent vectors

in V, the vector space V is said to be infinitely dimensional.

Example 3.10. The space F" is n-dimensional, and %(]0, 1]) is infinitely dimensional (since

n—1

Lyz,--- 2" ! are n linearly independent vectors in €([0, 1])).

Definition 3.11 (Basis). Let V be a vector space over F. A collection of vectors {v;};cr in

V is called a basis of V if for every v € V, there exists a unique {«;};er € F such that

’U:ZOél"Ui.

ael

For a given basis B = {v;};cz, the coefficients {«;};er given in the above relation is denoted

by [’U]B.

Example 3.12 (Standard Basis of F"). Let e; = (0,,---,0,1,0,---,0), where 1 locates at

the i-th slot. Then the collection {e;}_; is a basis of the vector space F™ over F since
n
(alu"'aan)zzaiei VO[,L'EF.
i=1

The collection {e;}! ; is called the standard basis of F".

Example 3.13. Even though {1, x, - xk } is a set of linearly independent vectors, it
is not a basis of €([0, 1]). However, let 22([0, 1]) be the collection of polynomials defined on
[0,1]. Then 22([0, 1]) is still a vector space, and {1,z,--- 2", -} is a basis of 2([0,1]).

3.1.2 Linear maps and their matrix representation

Definition 3.14. Let V, W be vector spaces over a common scalar field F. A map L from
V to W is said to be linear if L(cv, + vy) = cL(v;) + L(vs) for all v, v, € Vand ce F. We
often write Lv instead of L(v), and the collection of all linear maps from V to W is denoted
by Z(V; W). We also write .2 (V) instead of Z(V;V) if W =V. An element in Z(V;F) is

called a linear functional on V.

46

Proposition 3.15. Let V and W be vector spaces over a common scalar field F. Then

Z(V;W) is a vector space over F.

Example 3.16. Let F be a scalar field, and A = [a;;]1<i<m1<j<n € M(m, n;F) be an m x n

matrix. Define a vector-valued function L : F" — F™ by

n n n
L(xy, - x,) = (Z a1y, Z 25T, Z amﬂj) :
j=1 j=1 j=1

Then L e Z(F", F™).

From Example 3.16, we see that any m x n matrix is associated with a linear map. Now
suppose that V and W are vector spaces over a common scalar field F, V is a n-dimensional
vector space with basis B = {v;}7_;, and W is a m-dimensional vector space with basis
B = {w}™,. Let L e Z(V;W). Since B is a basis of W, for each 1 < j < n there exist

m

unique ay;, as;, - -, Ay, € F such that Lv; =) a;jw;. Moreover, if w € V, then there exist
i=1
c1,- - , ¢y € F such that
n
u:chvj or c=|ulg,
Jj=1

and by the linearity of L,

Lu= L(Z Cj’l]j) = Z CjL’Uj = Z Z C;Qi; Wy = Z (Z aijcj> w; .
J=1 J=1 Jj=1li=1 =1 j=1
Let b; = Y ajcj, and b = [by, - ,by,)T. Then with A denoting the m x n matrix
j=1

[aij]1<i<m,1<j<n

[Lu]y =b=Ac= Alulp.
The discussion above induces the following

Definition 3.17. Let V,W be two vector spaces, dim(V) = n and dim(W) = m, and
B, B are basis of V, W, respectively. For L € Z(V; W), the matriz representation of L

relative to bases B and B, denoted by [L] 5.0 18 the matrix satisfying
Luly = [Lggluls VucV.

If L e Z(V;V), we simply use [L]|p to denote [L|z 5.

47

"1 withm = n—1.

Example 3.18. Let V = span(1,z, -+ ,2" ') and W = span(1,z, -+ ,x
Then di .V - W defined by
A

is linear, and the matrix representation of . (relative to the standard basis of V and W) is

X
o 1 0 --- 0
0 9 - .
0
NM-TOWS < : .0 (n—-1)
0
CLo o e e 0 |

Theorem 3.19. Let V1,V,, V3 be finite dimensional vector spaces, and By, By, Bs be basis
of Vi, Vs, V3, respectively. Then

[TS]B&Bl - [T]33,32 [5]32751 VSe g(vl; VZ)a T e $<V2; V3) :
Proof. Let S € Z(V;V,) and T € £ (Vy;V3) be given. For all ve Vy,
[TSU]BS = [T]BS:BQ [SU]BZ = [T]Bs,Bz [5]32731 [v]Bl and [TSU]BS = [TS]B&BI [v]Bl :

Therefore,
[T]B37B2 [8]32,31 [v]Bl - [TS]B3781 [’U]Bl Vve Vy;

thus letting v be any basis vector implies that

[TS]B&BI - {T]Bs,lﬁ [5]52,31 . o

3.1.3 Algebraic dual spaces

In the rest of this section, we will only focus on the space Z(V; W) for the case that the
codomain W is the underlying scalar field F. In such a case, we use V' to denote Z(V;TF),

called the algebraic dual space of V.

48

Example 3.20. Let V = R". From Linear Algebra we know that V/ = R™ in the sense that

every f € V' corresponds to a unique matrix a = [ay, - - - , a,] € R" such that

f)=a-z

so that we identify f as the vector a € R™ to obtain that V' “="V.
A bit more generalized version of the result above is that (C")’ = C” in the sense that

every f € (C™)’ corresponds to a unique vector a = (¢, ,¢,) € C" such that
n
f(z)=c-z= Zéjzj,
=1

where ¢; is the complex conjugate of c¢;.

We note that the example above shows that dim(R") = dim ((R")’) and dim(C") =
dim ((C")’). In general, we have the following

Proposition 3.21. Let 'V be a finite dimensional vector space over field F. Then dim (V') =
dim(V).

Proof. Let dim(V) = n and {ey,--- ,e,} be a basis of V. Define ¢y, - - ¢, by

(,Oi(ZCjej) :ZC]'(SZ']' Vi<i<n and CjEIF. (31)
j=1 j=1
Then @1, -+, ¢, € V. Moreover, the collection {1, - ,p,} are linearly independent since

if g, -+, € F verify that
a11 + oy + - -+ app, = 0 (the zero function)

we must have

(a1p1 + aopa + - - + anpn)(ej) =0 Vi<j<n

which, using (3.1), implies that a; = 0 for all 1 < j < n. Therefore, dim(V’) > n.
On the other hand, suppose that f € V' and f(e;) = d;. If € = x1e; + -+ + z,,e,,, the
linearity of ¢ implies that

f(x) = f(vier + - +ane,) =1 f(er) + - +anfle,) = divy + -+ dpzp

49

and (3.1) shows that

(dipr + -+ dnn) () = (dipr + - + dnpn) (T100 + - + 20€,) = Z digoi(z xjej)
i=1 j=1

- ii dix 055 = Zn:dzwi =dyz1 + -+ dpxy, .

i=1j=1 i=1

Therefore, f = dyp1+- - - +d,p, which implies that V' = span(py, - -+, ¢,). This establishes
that dim(V’) = n. o

3.2 Direct Sum of Vector Spaces and Multi-Linear Maps

3.2.1 Direct sum of vector spaces

Definition 3.22. Given sets A and B, the Cartesian product of A and B, denoted by A x B,
is the set of all ordered pairs (a,b) with a € A and b € B; that is, A x B = {(a,b) ’ a €
Aand be B}. The Cartesian of three or more sets are defined similarly.

Let X and Y be vector spaces over a common scalar field F. The direct sum of X and

Y, denoted by X @Y, is X x Y with the following vector space structure:
A(21,y)) + (20, y5) = (N1 + 22, A -y + 1) VAeF o,z X and y,,y, €Y.
For £ € X and y € Y, the ordered pair (z, y) is also written as £ @ y.

Remark 3.23. 1. The direct sum is a way of getting a new big vector space from two (or
more) smaller vector spaces in the simplest way one can imagine: you just line them

up.

2. Let X,Y be finite dimensional vector spaces over a scalar field IF, where F = R or C.
Then X @Y is a finite dimensional vector space over F and dim(X ®Y') = dim(X) +
dim(Y’) for X @Y has a basis {:1:1@0,332@0, Xy D0,0D Y, 0D Y, - ,O@yn},

where {@,,--- , @} is a basis of X and {y,,--- ,y,} is a basis of Y,

Definition 3.24. Let X, Y, Z, W be vector spaces over field F, and A € £ (X;Z), B €
Z(Y;W). The direct sum of A and B, denoted by A® B, is a linear map in Z(X®Y, Z&W)
satisfying that

(A®B)(z®y) = (Az)® (By) VzeX yeY.

20

Theorem 3.25. Let Xy, Xy, X3, Y1, Y5, Y3 be vectors spaces over field F, and Ay € £(X1; X3),
AQ € X(X%Xg), Bl € g(Yi,Yrg), B2 € g(}/g,Y}) Then

(A @ B2)(A1 @ By) = (A2A) ® (B2 By) .
Proof. Let x € X; and y € Y;. Then by the definition of the tensor product of linear maps,

(A2 @ Ba)(A1 ® By)(z @ y) = (A2 @ Ba)(A1z @ Bry) = (A2 A1z ® BBy y)
= (AgAl &) BgBl)(ﬂZ@ y) . O

Theorem 3.26. Let X1, Xo, Y7, Y5 be finite dimensional vector spaces over field F, and
Ae X(Xy1;Xy), Be ZL(Y1;Ys2). Suppose that relative to given basis of X1, Xa, Y1, Ya, the
matriz representation of A and B are [A] and [B], respectively. Then relative to the basis
of X1 ®Y1 and Xy @ Y3 associated with given basis of X1, Xa,Y1,Ys (explained in Remark
3.23), the matriz representation of A® B is

3.2.2 Multi-linear maps
Multi-linearity is an extension of linearity of maps.

Definition 3.27. Let V;,V,, W be vector spaces over a common scalar field F. A map
L:V,®Vy —> W is said to be bilinear map provided that
L(cu+ v,w) = cL(u, w) + L(v, w) Vu,veVy,weVyand ceF, (3.2a)
L(u,cv+ w) = cL(u,v) + L(u, w) VueVy,v,weVyand ceF. (3.2b)

The collection of all maps L : X @Y — Z satisfying (3.2) is denoted by £ (Vy, Vo; W).
We can extend the bilinearity to multi-linearity easily through the following

Definition 3.28. Let Vq,---,V,,W be vector spaces over a common scalar field F. A
map L:V;®---®V, - W is said to be multi-linear, denoted by L € Z(Vy, -, V,; W),
provided that

L(ula T, Ui, CUy + Wy, Ujt1, ", un)

:CL(ula"' Jujfhvj?uj—{-l?'” 7un)+L(u17”' 7uj7wj717uj+17”' 7un)

forall1<j<nandcel, and uy €V, for all £ # j, v;, w; € V;.

51

Proposition 3.29. Let Vy,--- ,V,, W be vector spaces over a common scalar field F. Then
LV, Vs W) is a vector space over F.

Proof. Let f,ge Z(Vy,---,V,),and a € F. Thenif 1 < j < n, ceF, and u, € V, for all

{# j, v;, w; € V;, we have

(af +g)(ur, - ujr, cv; + Wy, Ui, Uy
:af(ul,--- ; Uj—1, CVj + Wy, Ujyq, - ,un) +g(u1,--- ; Uj—1, CVj + Wy, Ujyq, - ,un)
= afcf(ur, -, i1,), wipr, W) f(Un, U, Wy, U, W)
+Cg(u1,~' W1, Vj, Wi, 7un> +g(u17... U1, Wi, Uiy, - ’un)
=claf +g)(ur, - w1, v, Ui, wn) + (af +9) (U, wjn, Wy, Ui,)
Therefore, af + g€ ZL(Vy,---,V,,; W). o

3.3 Inner Product Spaces and Hilbert Spaces

Definition 3.30. An inner product space (V,<-, >) is a vector space V over a scalar
field F (where F = R or C) associated with a function {-,-): V x V — [such that

1) (@,z)=>0, VeV,
2) (x,z) =0 if and only if = 0.

(1)
(2)
(3) (x,y+2) =(x,y)+(z,2) forall z,y, z€ V.
(4) (=, \y) = M, y) forall \e F and 2,y € V.
(5)

5) (x,y) =y, x) for all x, y e V, where ¢ denotes the complex conjugate of c.

A function (-, -) satisfying (1)-(5) is called an inner product on V.

Proposition 3.31. Let (-,-) be an inner product on a vector space V over a scalar field F.
Then

L. {u, \w+ pw) = XMu, v) + pu, wy for all w,v,weV and \,ueF.
2. v+ pw, u)y = X, u) + iw, wy for all u,v,weV and \,peF.

3. (0, w) ={w,0) =0 for all we V.

92

Theorem 3.32. The inner product {-,-) on a vector space V over scalar field F satisfies the

Cauchy-Schwarz inequality

(. 9| < iz o\ (yy) VayeV. (3.3)

Moreover, for non-zero vectors x,y, the equality holds if and only if there exists v € F such

that ¢ = vy.

Proof. Let x,y € V. Define a = (x, y). W.L.O.G. we can assume that a # 0 (for otherwise
(3.3) holds trivially). Then there exists 5 € F such that a- 5 = |a| (so |5| = 1). For any
A e R,
0 < A8z +y, Az + y) = N|B]*(m,)* + (\Bz, y) + (y, ABz) + (y,)
=z, &) + A3z, y) + M Pz, y) + (y, 9)°
= (@, x> + 2\ [(z, v)| + (v, v)°. (3.4)

Since the right-hand side in the inequality above is always non-negative for all real A\, we

must have
2
(&, y)|” — (z, @) - (y,y) < 0
which implies (3.3).
Finally, suppose that x,y # 0 and ‘<w, y>‘ = \/(x, x)r/{y,y). Then with X\ € F given

by A = — EZ’ zi, (3.4) shows that

0 < \Bz+ y, \Bz) = Nz,) + 2\/{=, $>m +{y,)
= (M z,)+ /(g y)" =0;

thus Az + y = 0. =

Definition 3.33. A normed vector space (or simply normed space) (V,||-||) is a vector
space V over a scalar field F, where F = R or C, associated with a function || - || : V - R
such that

(a) ||z| =0 for all ze V.
(b) ||| = 0 if and only if = 0.

() [AN-x| =N |z| forall \e F and x e V.

23

(d) |2+ yl < ||+ [y] for all &,y e V.

A function | - || satisfying (a)-(d) is called a norm on V.

Theorem 3.34. The inner product {-,-) on a vector space V (over scalar field F) induces a
norm | - | given by x| = /(z,).

Proof. 1t should be clear that (a)-(c) in Definition 3.33 are satisfied. To show that | - |
satisfies the triangle inequality, by (3.3) we find that

2
(2] + |y])* = |z + ul? = |2|? + 2|2y + |v]* — (x+ v, =+ v)
— 2(|a||y| — Reda, v) = 2(| 2|y — |(z, 3)|) = 0;

thus the triangle inequality is also valid. =

Having introduced the induced norm of inner product spaces, it is easy to see the follow-

ing two propositions and the proof of the propositions is left to the readers.

Proposition 3.35 (Parallelogram Law). Let (V,{-,-)) be an inner product space, and | - ||

be the norm induced by the inner product. Then
|z —yl* + |z +y|* =2(|=|* +[y|*) Ve yeV.

Proposition 3.36 (Polarization Identity). Let (V,{:,-)) be an inner product space over F,

and || - | be the norm induced by the inner product.

1. IfF = R, then (z, y) = i[HiE—l— Y2 — |z — y|?] for all z,ye V.

1
2. IfF =C, then{(z,y) = 1 [H:I;+ y|? - ||a:—yH2—sz+zyH2+zH$—zyH2] forallz,yeV.

We remark here that the polarization identity provides a way to reconstruct the inner
product once you only have the induced norm. The polarization identity provides a way to

verify if the norm of a normed space is induced by some inner product.

Definition 3.37. A Banach space is a complete normed vector space, and a Hilbert
space is a complete inner product space (that is, a Banach space whose norm is induced by

the inner product).

Remark 3.38. In the definition above, the completeness of a normed vector space is defined

as follows.

o4

1. A sequence {x,}> ; is called a Cauchy sequence in a normed vector space (V.| - |) if

(Ve>0)(AN>0)(n,m =N = |z, — .| <e).

2. A normed space (V, |-|) is complete if every Cauchy sequence in V converges; that is, if

{x,}_, is a Cauchy sequence in V, then there exists € V such that lim |z, —| = 0.
n—ao0

Theorem 3.39. Let (H,{:,-)) be a Hilbert space, and E be a closed convex subset of H. If

x ¢ E, there exists a unique xg € E such that
|z — x| = dist(z, E) = inf { |z — y| |y e E}.
Proof. By the definition of the infimum, there exists a sequence {x,}* ; < E such that
dist(z, E)? < |2 — | < dist(x, E)? + % |

By the parallelogram law (Proposition 3.35),

b+ CHZ

|b— c|? +4Ha— 5

=2la—b|? +2|la— ¢|? Va,bceH. (3.5)

Ty + Ty

Let a =z, b=z, and ¢ = x,, in (3.5). The convexity of £ implies that € F; thus

Ha} — WT%H > dist(x,). Therefore, for all n, m € N,

2 2
lzn — 2| < Q(Haz — x,|? + || — zp|]*) — 4dist(z, B)* < = + —.
n m

The inequality above shows that {x,}? ; is a Cauchy sequence in E. Since H is complete,
{x,}*_; converges to some point xy € H, and the closedness of E implies that xy € E.
Moreover,

| — xo| = lim ||z — x,| = dist(z, E) .
n—0oo
For the uniqueness of such a closest point, suppose that y,, y, € F are distinct and satisfy
|z =y = [z — y,| = dist(z, E) .
Then (3.5) implies that

Y1+ Yo
2

1 .
EE P = (20w = P+ 2w — gl — Jyy — l?] < dist(z, B)*.

By the convexity of F, we have w € I; thus the above ineqaulity implies that y,, y,

cannot be the closest point of F to point x, a contradiction. =

95

Definition 3.40. Let (H, (-, -)) be a Hilbert space, and W be a subspace of H. The orthog-
onal complement of W, denoted by W+, is the set

W= {zecH|(m,yy=0foral ycW}.

Proposition 3.41. Let (H,{:,-)) be a Hilbert space, and W be a subspace of H. Then E*

s closed in H.

Proof. The valid of the proposition follows from that

Bt =) {zeH|{z,y) =0}

yeE

and the fact that the set {x € H|(x, yy = 0} is closed for cach y € H. o

Lemma 3.42. Let (H,{-,-)) be a Hilbert space, and W be a subspace of H. Then
(WhHE=W.

Proof. First we note that if £ € W, then {(x,y) = 0 for all y € W*. This implies that
x e (WH)*. Therefore, W < (W+)+. By Proposition 3.41, we must have W < (W+)*,
Suppose that W < (W+)Y. Then there exists & € (W*)+ n WE. Since W is a closed
subspace of H, W must be convex; thus Theorem 3.39 implies that there exists a unique
xo € W such that
| — x| = dist(z, W).

Note that — xp € (W*)*. On the other hand, — zy € W+ < W+ since x is the closed
point to in W. Therefore,
x—xoe (WHtA Wt

which implies that — &y, = 0, a contradiction to that = ¢ . =

Corollary 3.43. Let (H,<{-,-)) be a Hilbert space, and W be a closed subspace of H. If
W # H, then W+ # .

e Orthonormal basis

Definition 3.44. Let (V,{-,-)) be a finite dimensional inner product space. A basis B =
{vi,---,vn} of Vis said to be orthonormal if {v;,v;) = ¢;; for all 1 < i,j < n, where d;; is
the Kronecker delta.

o6

Let (V,{-,),) and (W, {.,-).) be two finite dimensional inner product spaces over C,
B = {vy,---,v,} and B = {wy, -+ ,w,,} be orthonormal basis of V and W, respectively,
and L e ZL(V:W). If A= [L] 5= [aijlmxn e the matrix representation of L relative to B
and g, then by the fact that

m n

Lv= Z (Z aijvj)wi

i=1 - j=1
we find that

m

(w, Lv),, = <k§1wkwk,z (2 Zjvj) > Z Z ;0 WE (W, W, = ZZ@ZJU]@UZ

=1 j=1 Jj=1ik=1 i=1j=1
= ([wlg Alvls),, = {[wlg, [L]gslvls),, = [wlg [Lv]z), -
The identity above converts the computation of the inner product of wand Lv in W in terms
of the inner product of [w]z and [Lv]z(= [L]z 5[v]s) in C™ using the matrix representation
of L and matrix multiplications.

In general, if Ly, Ly € £ (V) and B is an orthonormal basis of V, then
(Lyu, Lyvy, = {[L1][u]s, [L2]sv]B>cn Vu,veV (3.6)

since

(Lyu, Lyvy, = {[Lyul, [Lo]s[v])en = {[L1]s[uls, [Lo]s[v]5)en -

3.4 Dual Spaces and Adjoint Operators

Definition 3.45. Let V and W be vector spaces over a common scalar field ' equipped
with norms | - |v and | - |w, respectively. A linear map L : V — W is said to be bounded if

the number

IL] zvw) = H SHUP |Lx|w < 0.
T VZI

The collection of all bounded linear maps from V to W is denoted by #(V,W). When
V =W, we write (V) instead of #(V,V). When the underlying spaces V, W are clear to

us, sometimes we simply use ||L| to denote the norm || L| g w).

Definition 3.46 (Dual Spaces). Let (X, | - |x) be a Banach space over scalar field F.
The (continuous) dual space of X, denoted by X*, is the collection of all bounded linear

functionals on X that is,

X* = {L e Z(X,T)

sup |L(z]<oo}

lll x =1

o7

Theorem 3.47. If (H,<-, >) s a finite dimensional Hilbert space over field F, then H* is
also finite dimensional and dim(H) = dim(H*).

Proof. Let {e;, ey, - ,e,} be an orthonormal basis of H (one can always find an orthonormal
basis through the Gram-Schmidt process). For each 1 < k < n, define ¢ : HH — F by

vr(x) = (e, @)
The Cauchy-Schwarz inequality (3.3) then implies that
on()| < [lex| - 2| = =] VaeH;

thus ¢, € H* for each 1 < k < n. Moreover, if ay,--- ,a, are numbers in F and ay¢; +

oy + - -+ 4+ aup, = 0 or to be more precise,
a1p1() + agpe(x) + -+ - + appn(x) =0 VaeeH,

then for each 1 < j < n, the fact that ¢;(e;) = 0, (the Kronecker delta) implies that
0= c1pi(e;) + aspa(e;) + -+ - + anpn(e;) = Z apOjk = -
k=1

Therefore, {¢1, @2, , @} is a linear independent set.

Finally, by the fact that @ =) {ex,) e, for all € H, we find that for f e H*,
k=1

f(z) = f(i<ek7 m>ek:) = i f(er)er(x) VaeeH.

This implies that {¢1, @2, ,¢,} is a basis of H*; thus dim(H*) = n. o

Theorem 3.48 (Riesz Representation). Let (H, (-, -)) be a Hilbert space. Then every L € H*
corresponds to a unique y € H such that L(x) = {y,) for all x € H. In other words, there
exists a bijection p : H* — H such that

L(z) ={p(L), z) VaeH.

Moreover, |¢(L)|| = | L|zmr for all L € H*.

o8

Proof. W.L.O.G., we assume that L is not the zero map (for otherwise we can choose y = 0).
Let | - || denote the norm induced by the inner product; that is, [v| = 1/(v, v) for all v e H.

Let N be the null space of L; that is, N = L™!({0}). Then N is closed, so Corollary 3.43
implies that N+, the orthogonal complement of N, has a non-zero element z with |z| = 1.
Such z verifies the identity that

L(L(z)z — L(z)x) = L(z)L(z) — L(z)L(z) =0 VeeH.
In other words, the vector L(x)z — L(z)x € N for all x € H. Therefore, for each x € H,
0= (2 Lm)z — L(z)2) = L(x)|2]* — L(z)(z) = L(z) — L()(z o)
so that letting y = I@z, we have
L(x) =y, x) VaeH.
Suppose that y,, y, € H satisfy L(x) = (y,,) = {(y,,) for all & € H. Then

Y1 — Yo, ®) =0 VaeeH.

In particular, letting = y, — y, in the identity above we find that |y, — y,| = 0; thus
the property of norms shows that y, = y,. Therefore, each L € H* corresponds to a unique

y € H satisfying L(x) = (y,) for all € H.

Finally, using the identity that |y| = sup [(y, ®)|, we find that
] =1
le(L)] = Sup [o(L),)| = o |L(z)| = | L #zs) o

Remark 3.49. Let (H,<{,-)) be a Hilbert space, and ¢ be the map given in Theorem 3.48.
Define

(L1, L)y, = {p(L1), p(Ls)) VL, LycH*,

Then (H*, (., -),,) is a Hilbert space, and |- |z is the norm induced by the inner product

given above. The operator norm | - |z sometimes is denoted by | - | g+.

Let (V,{-,-),) and (W,{.,-),) be Hilbert spaces over a common scalar field F, where
F=RorC, and Ae #(V,W). Note that the boundedness of A implies that

[Av|w < [Alawwmlvly <o VoeV.

29

For a given we W, define L : V — I by
L(v) = {(w, Av),, .
Then L € V' (the algebraic dual space of W) and the Cauchy-Schwarz inequality (3.3)
implies that
|L(v)| < |wlw|Av|w < [w]w]|Alsewwmlvlv

so that

”s“up |L(v)| < | Al gev,mllwlw < o
v|y=1

Therefore, L € V* (the continuous dual space of W). By the Riesz representation theorem

(Theorem 3.48), there exists a unique vector u € V such that
L(v) = (u,v), VveV.

The map w — w is denoted by A* (so A* : W — V), and A* is called the adjoint operator
of A. We note that A* satisfies that

(w, Av),, = (A*(w), v), VveV, weW
so that for all v €V and wq, wy in W,

(A*(Awy + paw,), v>V = Qw; + pwy, Avy, = M wy, Av),, + fi{ws, Av),,
= A(A*(wy), v>\v + a(A*(ws), v>V = (A" (wy) + pA* (ws), v>V :
Therefore,
A*(Awy + pws) = AA*(wy) + pA* (wy) YV wy, wy € H;

thus A* € £ (W, V). Moreover,
|A*| ewy)y = sup sup ‘<A*w, v>V| = sup sup ‘<w, Av}w‘
[wlw=1 [v]v=1 [wlw=1 [v]v=1

= sup sup [(w,Av),|=|A|zww:;

[vllv=1[wlw=L1

thus A* is indeed bounded.

Definition 3.50. Let (V,{-,-),) and (W,{-,-).,,) be Hilbert spaces over a common scalar
field F, where F = R or C, and A € Z(V,W). The adjoint operator of A, denoted by A* is
the unique element in (W, V) satisfying that

(w, Av),, = (A*w, v), VvoeV, weW.

60

Remark 3.51. The adjoint operator can be defined for general linear operator (which may
be unbounded) as follows. Let (X, || x) and (Y, ||-||y) be normed spaces, and A : D(A) — Y,
where D(A) is a dense subset of X called the domain of A. The adjoint operator of A,
denoted by A*, is an operator from a subset of Y* to X™* satisfying

A*y* x) =(y*, Az) Vxze D(A),y" e D(AY),

where (-, -) denotes the duality pairing (a fancy way to express linear functionals in functional
analysis), and D(A*), the domain of A*, is the set

D(A*) = {y* e Y*|3C > 03 [(y*, Am)| < C|z|x for all x e D(A)}.

Remark 3.52. Let (V,(.,-),) and (W, (., -),) be Hilbert spaces over a common scalar field
F, where F =R or C, and A € Z(V,W). By the property of inner product,

(Av, w),, = (w, Av),, = (A*w, vy, = (v, A"w), YVveV,weW.
Therefore, the adjoint operator A* of A satisfies
(w, Av),, = (A*w,v), and (Av, w), = (v, A*w), Vw,veH. (3.7)

Proposition 3.53. Let (V,{-,-),) and (W,{-,-),) be Hilbert spaces over a common scalar
field F, where F =R or C, and Ae B(V,W). Then (A*)* = A.

Proof. Let v eV be given. Then if we W, using (3.7) we find that
(Av, w),, = (v, A*w), = ((A*)*v, 'w>W :

Therefore, Av = (A*)*v for all v e H; thus A = (A*)*. o

e Matrix representation of adjoint operators

Let (V,{-,-),) and (W,{.,-),) be two finite dimensional inner product spaces over C, B =
{vi,--+,v,} and B = {wy, -+, Wy} be orthonormal basis of V and W, respectively, and
L e Z(V;W). Using (3.6), we find that the matrix representation of L and L* satisfy

the (i, j)-entry of [L*]B,é

= Vil [L*]g glWilg) ., = (vis L*Wy), = (Lvi, Wy, = (W, Lvi),
= the complex conjugate of the (j,4)-entry of [L]z 5.

This observation motivates the following

61

Definition 3.54 (Conjugate transpose of matrices). Let A = [a;;|mxn be an m x n complex
matrix. The conjugate transpose of A, denoted by A™, A* or A" (the last one is often used

in quantum mechanics), is an n x m matrix [b;j],xm given by b;; = @j;. In other words,

T

11 Q12 - QAip ailz Aas1 - Aml
Q21 Q22 - A2 a2 A2 -+ Am2
Am1 Am2 - Qmp A1p A2n - Omp

Remark 3.55. For real matrices, the conjugate transpose is just the transpose.

Theorem 3.56. Let (V,{-,-),) and (W,{-,-)..) be finite dimensional inner product spaces
over C, B and B be orthonormal basis of V. and W, respectively. If L € L(V; W), then

L7155 = 121}

Definition 3.57. Let A = [a;;] be a square matrix.
1. A is said to be Hermitian if A = Al
2. A is said to be skew Hermitian if AT = —A.
3. Ais said to be normal if AAT = ATA,

4. Ais said to be unitary if A=t = AT (explained in Section 3.5).

3.5 Unitary Operators and Unitary Matrices

The concept of unitary operators is a generalization of orthogonal matrices that have the
property that O~! = OT.

3.5.1 Unitary operators
Definition 3.58. Let (H, (-, -)) be a Hilbert space, and U € Z(H).
1. U is said to be self-adjoint if U* = U.

2. U is said to be unitary it UU* = U*U = Id, where Id denotes the identity map on
H.

62

The collection of self-adjoint operators on H is denoted by %, (H), and the collection of
unitary operators on H is denoted by U(H).

Remark 3.59. Let (H,{-,-)) be a Hilbert space over field F, and U € Z(H).

1. If F = R, then U satistying UU* = U*U = Id is often called orthogonal instead of

unitary. Therefore, when the term “unitary” is used, we often assume that F = C.

2. If U is unitary, then U* is also unitary.

Theorem 3.60. Let (H,(-,-)) be a Hilbert space over field C, and U € (H). The following

three statements are equivalent.

1. U is unitary.
2. U is surjective and |Uz|| = ||| for all x € H.

3. U is surjective and Uz, Uy) = {x, y) for all z,y € H.

Proof. “1 = 27: Let z € H be given. Then y = U*z € H satisfies Uy = z. This implies

that U is surjective. Moreover, if & € H be given, then
|z|* = (z, z) = (z,U*Va) = (Uz,Uz) = |Uz|*;
thus |[Uz| = || for all € H.
“2 = 3": Let &, y e H. Then
|U(z + y)|* = Uz +y),Ulz+y)) = |[Uz|* + Uz, Uy) + Uy, Uz) + |Uyl*
= |Uz|* + 2Re((Uz, Uy)) + |Uyl?,
|z +y|* = |=* + (@ y) + (y.) + [y[* = [2]* + 2Re((z,) + [y]*,
and
|U(z +iy)|* = U(z +1iy), Uz +iy)) = |Uz|* + iUz, Uy) — iUy, Uz) + Uyl
= |Uz|* — 2m((U=, Uy)) + Uy,
|z +iy|* = |z|* + iz, y) — iy, z) + |y|* = |z]* — 2Im({z,) + |y]*.
Since |Uz| = || for all € H, we have
Re((Uz,Uy)) = Re((z,y)) and Im((Uz,Uy)) = Im({z, y)).

Therefore, (Uz,Uy) = (x,y) for all z,y e H.

63

“3 = 1": Let x € H be given. Then
U Uz, y)=Uz,Uy) ={(x,yy VyeH;

thus U*Ux = @. This implies that U*U = Id on H.

On the other hand, since U is surjective, for each y € H there exists @ € H such that
Uz =y. Using U*U = 1d, this £ must be U*y; thus UU*y = y for all y € H. This
shows that UU* = Id on H; thus U is unitary. O

Corollary 3.61. Let (H,<{:,-)) be a Hilbert space over field C. If U € U(H), then |U| = 1.

Definition 3.62. Let (X, | - |) be a Banach space, and T' € Z(X). The spectrum of T
denoted by o(7), is the collection of all A € C for which the operator T'— AId is not invertible.
In other words,

o(T) = {A e C|(T — AId) is not bijective} .

A number X € o(T) is called an eigenvalue of T if T — AId is not one-to-one. The collection

of all eigenvalues of 7" is called the point spectrum of 7" and is denoted by o, (7).

Theorem 3.63. Let (H,<{-,-)) be a Hilbert space, U € U(H), and X be an eigenvalue of U.
Then |\ = 1.

Proof. Let A be an eigenvalue of U. Then there exists a non-zero vector & € H such that
Ux = Ax. Therefore,
|Uz] = Al ,

and the theorem is concluded by Theorem 3.60 and the fact that o # 0. =

3.5.2 Unitary matrices

Definition 3.64. A unitary matrix A is the matrix representation of some unitary map
U :H — H, where H is a finite dimensional inner product space over C, relative to an

orthonormal basis of H.

By the definition of unitary maps, Theorem 3.19 and 3.56 provide an alternative defini-

tion of unitary matrices that we state as follows.

Definition 3.65 (Alternative Definition of Unitary Matrices). A square matrix A is said
to be unitary if AAT = ATA = 1. The collection of all n x n unitary matrices is denoted by
U(n).

64

Corollary 3.66. If Ae U(n), then A=t = AT.
Corollary 3.67. If Ae U(n), then |det(A)| = 1.

Definition 3.68. The special unitary group of degree n, denoted by SU(n), is the collection
of n xn unitary matrices with determinant 1. An element in SU(n) is called a special unitary

matrix.

Definition 3.69 (Walsh-Hadamard Matrix). For m € Nu {0}, the Walsh-Hadamard matrix

H,, is a 2™ x 2™ matrix defined recursively by

Hm—l Hm—l
Hmfl _Hmfl

1
1. Hy=1. 2 H, ——
0) \/§|:

We note that H,, is symmetric and orthogonal/unitary for all m € N (which can be

} for all m e N.

proved by induction).

Remark 3.70. The original definition of the Hadamard matrix (of order 2™), denoted by
H,,, is a 2™ x 2™ matrix defined recursively by

Hm—l Hm—l

1. HO = 17 2. Hm = [Hm,1 —Hm,1

} for all m € N.

However, in quantum computing we usually only consider unitary matrices, so the factor
1
7 is to normalized the original Hadamard matrices so that the norm of each colum (and

also each row) all become 1. Therefore, the Hadamard matrices given in Definition 3.69 is

sometimes called the normalized Hadamard matrices.

Remark 3.71. Let the (k,{)-entry of H,, be denoted by hye; that is, H,, = [hke]i<ko<om.
Then

m

e = 27 F (<D0 * D

where the bitwise dot product e of two numbers £ and /¢ is given by

kol =Y kjty = kily + kols + - + konbim (3.8)

j=1
if k= (klk’g s km)g and ¢ = (6162 - gm)g
In matlab®, the bitwise dot product of 2 and y can be computed by

r ey = de2bi(z,n) = de2bi(y,n)’

if both and y can be expressed as n bits binary numbers.

65

Exercise 3.72. For matrices A = [ag] and B = [by| of the same size m x n, define the
Hadamard product of A and B, denoted by A® B, as an m x n matrix whose (k, {)-entry

is give by agsbre; that is,
C = A @ B, C = [de s Cry = (Zkgbkg . (39)

In matlab®, the Hadamard product of A and B can be computed by A® B = A » B. In
the following, we will always use .+ to denote the Hadamard product.

Let M,, = v/2"H,, be the unnormalized Hadamard matrix whose (k, £)-entry is given by
(=1)*=D =D "and r; be the (j + 1)-th row of M,,. Define ¢ : {0, 1}" — {rg, 71, -+, Pon_1}
by

(1, J2 - s Jn) =15 i = (2 Jn)2 -

Show that ¢ : ({0,1}",®) — ({ro, Ty, Ton_1}, *) is a group isomorphism, where @ is
the element-wise addition in Zs; that is,
(xlax% to 7'r'fl) @)(yl’y% o 7yn) - (‘rl ®y17x2®y27 o 7xn®y7l) .

In other words, show that ¢ : {0,1}" — {7rg, 1, -+, Ten_1} defined above is a bijection and

gO((kl, ,k’n)@(gl, ,én)) =T .*Ty Vk’ = (k’lk’gk’n)z and EZ (€1€2€n)2

3.6 Quantum Mechanics

One should treat this section as an independent section.

Definition 3.73. A linear map A : H — H is called an operator on the Hilbert space H.
The set of all operators on H is denoted by .Z(H). A linear map T : Z(H) — Z(H); that
is, an operator acting on operators, is called a super-operator. The operator A* : H — H
that satisfies

(A*Plg) = (W[Ag) VI[Y),|¢)eH
is called the adjoint operator of A. A is called self-adjoint if A* = A, and the collection of
all self-adjoint operators on H is denoted by s, (H).

Definition 3.74 (Spectrum). Let A be an operator on a Hilbert space H. A vector [¢) €
H\{0} is called an eigenvector of A with eigenvalue A € C if

Alp) = Ali).

66

The linear subspace that is spanned by all eigenvectors for a given eigenvalue A of an operator
A is called the eigenspace of A and denoted by Eig(A,). An eigenvalue A is called non-
degenerate if its eigenspace is one-dimensional. Otherwise, A is called degenerate. The set
{)\ eC ‘ (A—XI)~! does not exist} is called the spectrum of the operator A and is denoted
by o(A).

Definition 3.75. Let H be a Hilbert space. An operator P € Z(H) satisfying P? = P
is called a projection or projector. If in addition P* = P, then P is called an orthogonal
projection.

Let Hgyp, be a subspace of H. If Py, is an orthogonal projection and satisfies Pgyp,|1)) =
|y for all |¢p) € Hgyp, we call Py, the projection onto this subspace.

Let A e Z(H). The projector onto the eigenspace Eig(A, \) of A is denoted by P, (here

A is not presented in the expression since we usually only focus on one particular A).

Definition 3.76 (Observables and Pure States). An observable; that is, a physically mea-
surable quantity of a quantum system, is represented by a self-adjoint operator on a Hilbert
space H. If the preparation of a statistical ensemble is such that for any observable rep-
resented by its self-adjoint operator A the mean value of the observable can be calculated
with the help of a vector 1)) € H satisfying |||¢))|m = 1 as

(Ay = WlAY), (3.10)

then the preparation is said to be described by a pure state represented by the vector
|1) € H. One calls |¢) the state vector or simply the state, and (A),, is called the (quantum
mechanical) expectation value of the observable A in the pure state [¢).

The space H is said to be the Hilbert space of the quantum system.

Using the diagonal representation of any self-adjoint operator A in terms of its eigenbasis

{e1, - ,e,}, the expectation value of the observable represented by A becomes
2
(Ayy = WlAY) = (P| Y Ao) ey = > A(wlej)eslwy = DT N[(wle| .
J J J

In measurements one always observes an element of the spectrum (see Definition 3.74) of
the associated operator. Since we restrict ourselves here exclusively to finite dimensional
systems, for our purposes we can thus identify the eigenvalues {\;} of a self-adjoint operator

A as the possible measurement results of the associated observable. In the case of a purely

67

non-degenerate spectrum the positive numbers |<1/J|ej>|2 are interpreted as the probabilities
with which the respective value A; is observed. This is formalized more generally in the

following postulate.

Postulate 3.77. In a quantum system with Hilbert space H the possible measurement val-
ues of an observable are given by the spectrum o(A) of the operator A € %,,(H) associated
with the observable. The probability Py(\) that for a quantum system in the pure state
|ty € H a measurement of the observable yields the eigenvalue A of A is given with the help
of the projection P, onto the eigenspace Eig(A, A) of \ as

Py(A) = |PAl)]r, -

Let A be an observable (with spectrum o(A) = {Ay, -+, \,} and corresponding eigen-
basis {e1, - ,e,}), [¢) € H be a state vector, and « € R. Then

(Aeioy = (" P|Ae™)p) = e (P Ap) = (A)y ;

that is, the expectation values of any observable A in the state ¢®[¢)) and in the state [¢)

are the same. Since
; 2 w 2 2
e lep|” = e (Wlep|” = [KWlep]
the measurement probabilities in the two states are also the same. This means that physi-

cally the state ¢®[¢)) € H and the state |1)) € H are indistinguishable. In other words, they

describe the same state.

Definition 3.78. Let H be a Hilbert space. For every [¢) € H with ||¢)[lg = 1 the set
Sy = {*[Y)|a e R}
is called a ray in H with [¢) as a representative.

Every element of a ray S, describes the same physical situation. The phase a € R in e'®
can be arbitrarily chosen. More precisely, pure states are thus described by a representative
|t)) of a ray Sy, in the Hilbert space. In the designation of a state one uses only the
symbol |¢) of a representative of the ray, keeping in mind that |1)) and €'®[+¢)) are physically
indistinguishable. We shall use this fact explicitly on several occasions.

Conversely, every unit vector in a Hilbert space H corresponds to a physical state, in

other words, describes the statistics of a quantum mechanical system. If |¢), 1)) € H are

68

states, then a|¢) + bj))y € H for a,b € C with |a|¢) + bj)|m = 1 is a state as well. This
is the quantum mechanical superposition principle: any normalized linear combination of

states is again a state and thus (in principle) a physically realizable preparation.

Postulate 3.79. In a quantum system with Hilbert space H every change of a pure state

over time

no measurement
—

|1ho) : state at time ¢, [9(t)) : state at time ¢

that has not been caused by a measurement is described by the time evolution operator
U(t,to) € U(H). The time-evolved state [1(t)) originating from |t)g) is then given by

() = U(t, to) Y (to)) - (3.11)
The time evolution operator U(t,ty) is the solution of the initial value problem
d
ZEU(t,tO) = H(t)U(t, 1), (3.12a)
Ulto, tg) =1, (3.12b)

where H(t) is the self-adjoint Hamilton operator (a.k.a. Hamiltonian), which is said to

generate the time evolution of the quantum system.

The operator version of time evolution given in Postulate 3.79 is completely equivalent

to the well-known Schrodinger equation

P () = Hl() (313)

which describes the time evolution of pure states as expressed by its effect on the state
vectors. This is because application of (3.12) to (3.11) results in the Schrédinger equation
(3.13), and, conversely, any solution of the Schrodinger equation for arbitrary initial states
[t(to)) yields a solution for U(t,tg). The formulation of the time evolution making use
of the time evolution operator U(t,ty) given in Postulate 3.79 has the advantage over the
Schrodinger equation that it can be used for mixed states (which we will not talk about)
as well. The operator H(t) corresponds to the observable energy of the quantum system.

Hence, the expectation value (H(t)), of the Hamiltonian gives the expectation value for

d
LS H(E) =0,

then the energy of the system is constant and is given by the eigenvalues {E;|j € I} of

the energy of the system in the state [¢). If H is time-independent; that is

69

H. The fact that these eigenvalues are discrete for certain Hamiltonians is at the heart of
the designation “quantum” It was Planck’s assumption that the energy of a black body
can only be integer multiples of a fixed quantum of energy, which helped him derive the
correct radiation formula. But the origins of this assumptions were not understood at
the time. Only quantum mechanics subsequently provided a theoretical and mathematical
theory delivering a proof for discrete energy levels.

The Hamilton operator H(t) not only corresponds to the energy observable of the system,
but also determines the time evolution of the system. The specific form of the operator H(t)
is determined by the internal and external interactions to which the quantum system is
exposed. Circuits in quantum computers are built up from elementary gates that act as
unitary operators V' on the states. In order to implement such gates one then tries to create
Hamilton operators that generate a time evolution U(t,t,) implementing the desired gate;
that is, one attempts to find H(t) and ¢ such that V = U(t, ty).

3.7 Tensor Product of Vector Spaces

Motivated by Section 2.3.1, in the following we investigate the general properties of tensor

product of vectors.

Caution: The definition of the tensor product given below is purely mathematics. You do
not need to understand fully in order to learn quantum computing; however, we encourage
you to go through this once for it will explain a lot of things that normal textbooks for

quantum computing will not talk about.

3.7.1 Tensor product

Let V be a vector space over a scalar field F. By Proposition 3.29, we find that V' is a
vector space over F as well. This enables us to consider (V’)’, the dual space of V'. In the
example above, we have that [(R™)’]” = R™. In general, (V') = V is not true, but there is

an injection ¢ : V — (V’)” in the sense that

(o)(f) = flv) VfeV'. (3.14)

The linear embedding ¢ : V — (V’)’ is a natural vector space isomorphism provided, again,
dim(V) is finite, the proof being evident as the embedding is a linear and injective map

between spaces with equal finite dimension (Proposition 3.21).

70

The embedding (3.14) permits us to define a vector space
VieVe®:---®V,,

called the tensor product of vector spaces Vi,V,, -+ V, with a common scalar field F.
Before proceeding to the definition of the tensor product of vector spaces, we first look at

the tensor product of vectors.

Definition 3.80. Let Vy,--- |V, be vector spaces over a common scalar field F, and v; € V;
be given for 1 < j < n. The tensor product v; ® - - - ® v, is a function from Vi@ --- @V,
to I defined by

(11 ® - ®v,)(f1, ﬁ = fi(vy) - fulvn). (3.15)

The associativity and distributive law of the scalar field of F imply the following three

propositions.

Proposition 3.81. Let U, V. W be vector spaces over a common scalar field F, and u € U,
veV and weW. Then

URUVAW=(URV)QWw=u® (VRO w).
Proof. Let f e U’, ge V' and h € W’. Then

(u@vRw)(f,g,h) = f(u)-g(v) - h(w) = [f(u) - g(v)] - h(w) = (u@v)(f,g) - h(w)
(u®v)@w]((f,9),h) = [(u®v)@w](f,g,h)

so that u® V@ w = (u® v) ® w. The identity u @ v® w = u ® (v® w) can be proved in

the similar fashion, and the proof is left to the reader. O

Proposition 3.82. Let Vy, ---, V,, be vector spaces over a common scalar field F. For
1<j<n,letveV, forl+#j, uj,w;eV; andceF. Then

Q- ®V_1Q(cu; + w) QU1 Q- R,
=c(1® QU 1QU;RV Q- QU,) + (VB - V1 QW, RV 11X Q).

71

Proof. Let f, € V, for 1 < ¢ < n be given. Then

(1@ ®v;1Q(cuj + W) QU1 ® - Quy) (f1,-+ , fn)
= fi(v1) -+ fj-1(vj-1) - filew; + wy) - fi41(v) -+« fulvn)
= cfi(v1) - fim(vjo1) - fi(wy) - fra(vg) -+ fu(on)

+ fi(vr) - fima(vima) - fi(wy) - fia(vg) -+ falvn)
= c(1® QU1 QU;RV 1 ® - ®vn)(f1, , fa)
+(® RV 1 QW V1 ® - ®v,)(f1, , [a)

which establishes the proposition. =

Proposition 3.83. Let Vi,--- |V, be vector spaces over a common scalar field F, and
v; €V, be given for 1 <j<n. Then v, ®- - -®v, € Z(Vy, -,V F).

Proof. Let 1 < j<n, freV,for £ # j, g;, h; € Vi and c € F be given. Then

(1@ @) (f1, , fi—1,¢9; + Ry, i1, s fn)
= fi(v) -+ fimr(wi-a) - [eg;(vy) + hy(v)] - fisa(vja) - fn(vp)
=cfi(v) - fim1(vj-1) - g5(v)) - fira(vjea) -+ - ful(vn)
+ filvr) - fi—1(vi—1) - hj(v)) - fia(vjsa) - - - fulwn)
=c(® - ®vy)(f1, , fi—1, 95 fivr, 5 fa)
+(v1®...®vn)<f17... 7fj—17hj7fj+17'” 7fn)

which shows that v; ® - - - ® v, satisfies the multi-linearity. o

The fact that Z(V1], -, V/:F) is a vector space over F motivates the definition of the

tensor product of vector spaces.

Definition 3.84. Let Vq, ---, V,, be vector spaces over a common scalar field F. The
tensor product space V;®- - -®V,, is the subspace of Z(V1,--- | V/;F) spanned by all finite
linear combinations of tensor products v; ® --- ® v,, where v; € V; for 1 < j < n and
v ® - Qu, e L(V], -,V :F) is given by (3.15).

The following proposition is a direct consequence of Proposition 3.81.

Proposition 3.85. Let U, V,W be vector spaces over a common scalar field F. Then

UeVW=UQV)@W=U® (VeW).

72

Proposition 3.86. LetVq,--- |V, be finite-dimensional vector spaces over a common scalar

field F. ThenV,®---V, is ﬁmte—dimensional and

dim (V; ®---@V,) H dim(V;) = dim(Vy) - --- - dim(V,,) .

Proof. By Proposition 3.85, it suffices to show the case n = 2.

Let {ej, e, -+ ,e,} and {€,€,, - ,€,} be basis of V; and V5, respectively. For x € V;

and y € Vy, write € = >, xper and y = > y,€,. Then Proposition 3.82 implies that
k=1 =1

n m n m
TRY= <Z $kek> ® (Z y@z) = Z Zifk?/e(ek @ €).
k=1 =1 k=1(=1
Since vectors in V; ® V, can be expressed as a linear combination of vectors of the form
x ® y, we find that every vectors in V; ® V5 can be expressed as a linear combination of
vectors from the set B = {ek ® € ! 1<k<nl</l< m} Since #B = nm, it suffices to
show that B is a linearly independent set.

Let {Ckg}lgksn,lgggm be a collection of scalars in F such that

n

Z Z creer, ®€ = 0 (the zero vector in V; ® Vy).
k=10=1

Let f; € V{ and g; € V} satisfy
filer) = 0w and g; (Ee) = 0j¢,

where d.. are the Kronecker delta. Then for each 1 <i<nand 1 <j <m,

(Z Z Cre€k ®eg> firgi) = Z Z Credindie = Cij
k=1(=1

k=1/¢=1

This implies that B is a linearly independent set; thus dim(V; ® Vy) = #B = nm. =

Next we consider the (matrix/coordinate) representation of tensor product of vectors.

This amounts to choose an ordered basis in the tensor product space. We start with the
following

Example 3.87. Let U and V be vector spaces over a common scalar field F, and By =
{uy, ug, uz} and By = {v;, v2} be basis of U and V, respectively. For x € U and y € V, there

exist unique w1, T, T3, Y1, y2 € F such that

$:I1’U,1+{L’2U2—|—IL‘3U3 and y:ylvl+y2'02,

73

By the property of the tensor product of vectors,

3 2
TRy = Z Z 2y (w; ® v;)
i=1j=1
so that the coordinate (the collection of coefficients) of ® y relative to the ordered basis
B ={u ® v, u; @ v, us ® v, Us ® Vo, U3 ® vy, U3 ® 172} of U® V is given by

(2191, T1Y2, ToY1, TaY2, T3Y1, T3Ya) -

Writing the coordinate in terms of a column vector, we have

ESV 2 |V
T1Y2 :y2: I
iy Y1
coun= () = = [1]| = || ® 1] - i
1’33/1 T :yl: T3
x3y2 | 3 _y2_]

The ordered basis B is called the induced basis of the ordered basis By and By.

Remark 3.88. For given basis of vector spaces, there are two induced basis, one for direct
sum of spaces and one for tensor product of spaces. We will abuse the use of the word

“induced” but keep in mind that it refers to one particular type.

The example above motivates the formal/computational definition of the tensor product
of vectors in C™ and C" as follows. Let © = [z1, %o, -+ , 2,7 € C™and y = [y1, v, - ,Yn]T €

C™. The “tensor product” of & and y, denoted by [z ® y], is a vector in C™" given by

I T1y1 1 Y1
. 1
T1Yn Yn €1 Y1
z@yl=| : | = : = Q:| =y
TmY1 Y1 Tm Yn
. T
| LmYn | | Yn | |

In fact, [x®y] € C™" is indeed the coordinate of x® y relative to the induced ordered basis
{e1®€,61®8, - ,e1Q8,,e:®08,e;,®8, - ,2Q8,, - ,€,D¢,€,Q&, -, €, D¢, }
of C" @ C".

74

Suppose that X,Y,Z W are vector spaces over a scalar field F. Then Z(X;Z) and
Z(Y; W) are also vector spaces so that Z(X; 7)) ® Z(Y; W) is a well-defined concept (in

the sense of Definition 3.84). In the following, we talk about an alternative definition of
ARBif AQBisif Ae Z(X;Z)and Be Z(Y;W).

Definition 3.89. Let X,Y, Z, W be vector spaces over a common scalar field F, and A €
Z(X;Z), Be ZL(Y;W). The tensor product of A and B, denoted by A® B, is an element
in Z(X®Y,Z®W) satisfying that

(A B)(z®y) = (Az)® (By) VYzeXandyeY.

Remark 3.90. To avoid confusion, instead of treating A ® B as the tensor product of A
and B one can also treat A® B as a “new operation” between linear maps A and B (but

with the same notation).

Proposition 3.91. Let A, B,C be linear maps on vector spaces X,Y,Z (over a common
scalar field F). Then

(A®B)®C=A® (B®C).

e Matrix representation of tensor product of linear maps

Suppose that X,Y, Z, W are finite dimensional vector spaces over field F, and {x1, -, x,},
{y,, -yt {z1,,2zn} and {wy, -, w} are basis of XY, Z W, respectively. Let
Ae Z(X;Z), Be Z(Y;W), and the matrix representations of A and B be [A] =

[@ii]1<i<m1<j<n and [B] = [bi;j]1<i<k1<j<e, Tespectively, so that

m

A(CliL’1 +-- Cn,iBn Z (Z azrc'r> Z;, (d1y1 + -+ déyz’) = <z/: bjsds> w

i=1 r=1 j=1 s=1

M-

Then

(A@B)((Clml + +Cnmn)®(d1y1 ’ +d/y£>)
[A(Clml + -+ Cnmn) [dlyl et d/yf)}

Jo (5
:[z(iazmz@] [g@w)%]

=1 r=1 7=1

75

Since the induced ordered basis of X ® Y and Z ® W are given respectively by

BX®Y:{:B1®y17"' ,w1®yé,az2®y1,~- ,$2®yg,"' 7wn®y17"' 7wn®yf}7

BZ@W:{Zl®w17"' 21 QW Z2Q W, 22 Q Wy, 2 Q W, >Zm®wk}>

the matrix representation of A ® B satisfies

B 7] [" l
c1dy Zr:1 s=1 a1,b15Crdg
n ¢
Cldﬁ 27”:1 s=1 alrbk’,scrds
Cod n J4
20 ZT‘:I 2521 a2rblscrds
A@B]| = 5
, n Y4
C2d€ Zrzl s=1 a2rbkscrds
n ¢
C'n,dl Zr:l s=1 amrblscrds
' n ¢
Cndé nfx1 _ZTZI Zs:l a"”bkscrds_ mkx1
for all ¢1,--- ,¢, and dy, -+ ,dy, in IF.

Let ¢; = d; =1, where 1 < j </, and ¢, = ds; = 0 for other r, s, we find that the j-th
column of [A ® B] is given by

_ - by
all'bk'j ;bkj
a21blj b?j aly blj
. : a . .
A@Bl(,j)=| o |=]" =1 |®
a21bk] bkj a b
. - ml kj
am,iblj . bl)
. J
) am1
amlbk’j
- - bkﬁj
so that the first ¢ columns of [A ® B] are given by
au[B] a11
, as1 | B
e Ble10- | P — 1 em.
am1

a1 |B]

76

Let ¢co =d; =1, where 1 < j </, and ¢, = d;, = 0 for other r, s, we find that the (¢ + j)-th
column of [A ® B] is given by

_ - [(b1]
a12b1j a1 :]
a12by, 01
G221 b a1z b1;
o a :
[AQ B|(:,(+j) = : — | 7% = :|®|:
a22bk;j bkj
- Am2 bkj
améblj ‘ bl)
. j
am,2'bkj m2
i i] bij | |
so that the (¢ + 1)-th to 2/-th columns of [A ® B] are given by
a12 [B] a
12
, ass|B
[A® B](:,(1:20) = ?” =|: |®[B.
Am2 [B] (2

In general, we can find that the (p — 1)/ + j column of [A ® B] by letting ¢, = d; =1

and ¢, = ds = 0 for other r, s and obtain that the matrix representation of A ® B is then

given by
an[B] CL12[B] s Aip [B]
. CL21[B] CL22[B] T Qop [B] .
aepl=| T U T =4lesl.
aml[B] A2 [B] e am,n[B]

Definition 3.92. Let A € M(m,n) and B € M(k,l) The tensor product of A and B,
denoted by A® B, is an (mk) x (nf) matrix given by

anB apB - a1, B
agp— | P b o el
amlB a"mQB T amnB

Remark 3.93. In matlab®, the tensor product A® B of two matrices A and B is given by

A® B =kron(A, B).

77

e Tensor product of Hilbert spaces

We note that the tensor product spaces defined above does not have an inner product
structure. Now let us talk about the Hilbertian tensor product of Hilbert spaces. Consider
a finite number of (complex) Hilbert spaces Hy,--- ,H, with respective Hermitian scalar
products {(-,-)1, --+, (-, .. Relying upon the above definition, we can first define their

algebraic tensor product

H®: - ®H,.

This is not a Hilbert space yet. However it is possible (not so easy) to prove that H;®- - -®H,,
admits an Hermitian scalar product induced by the ones of each H;. This scalar product
{-,-) is the unique right-linear (property (3) and (4) in Definition 3.30) and left-antilinear
(property (3) and (5) in Definition 3.30) extension of

<u1®---®un,'v1®--~®vn>zH<uj,vj>j if ’l.l,j,’UjEHj for allléjén (316)

J=1

The (anti)linear extension is necessary because ¥, ® - - - ® 1, is not the generic element of
H; ® --- ®H,, the generic element is a finite linear combination of these elements!

It turns out that the unique (anti)liner extension of (3.16) defines an Hermitian scalar
product on H; ® - - - ® Hl,,, in particular the extension is positively defined (property (1) and
(2) in Definition 3.30).

Definition 3.94. The Hilbertian tensor product of (complex) Hilbert spaces (Hj, (-,)1),
o+, (H,,{-,)n) is the (complex) Hilbert space H; ® - - - ® H,, given as the completion of the
algebraic tensor product H; ® --- ® H,, with respect to the Hermitian scalar product {-,-)
which uniquely (anti)linearly extends (3.16).

The completion V of a vector space V equipped with an Hermitian scalar product (-, -)
is the complete (Hilbert) space of the equivalence classes of the Cauchy sequences in V
equipped with the unique continuous extension of {-,-). So it is uniquely defined (up to
Hilbert space isomorphisms) and V is dense in V. Nevertheless, the Hilbert spaces H; in
quantum computing are C2? for all 1 < j < n, so the tensor product spaces H; ® --- ® H,

along with the norm induced by the inner product defined by (3.16) is again a Hilbert space.

78

Theorem 3.95. For each n € N,

n

@ (1) + e [1)) = (10) + 1) @ (|0) + €*[1)) ®

(=1
2" —1
— 2 ei(jl¢1+j2¢2+'“+jn¢n)’j>’

=0
where |j) = [jija - jn) for j € {0,1}".

Proof. Since
1

0)+ €1y = 3} e g,

Je=0
we find that

n 1 1

R (0 + (D) =@ 3 erliy = (Y emeilin) @@ (3] eveli)

=1 =1 j,=0 j1=0
1 1

@ ([0) + (1))

1

Jn=0

1
= Z Z Z /117202 +ndn) |5 N @ 15,5 @ -+ - @ [jind

71=0j2=0 jn=0
1 1 1
_ Z o Z ei(j1¢1+j2¢2+'“]'n¢n)‘j1j2 ..]n>
Jj1=0j2=0 Jn=0
_ Z ei(j1¢1+j2¢2+“‘jn¢n)‘jle ..]n>

which concludes (3.17).

Corollary 3.96. For eachn e N and j = (j1J2 - jn)2,

2" —1

ot - e . 1
k=0

17k,

where we recall that with k = (kikg - - ky)2, j @ k= jiki + - Jnkn.

Proof. Note that for j, € {0, 1},

) 1
H|]e> =

S

1
=) (-1 ke).
ko=0

(3.17)

(3.18)

79

Therefore, using (3.17) for the case ¢; = ky,- -+, ¢, = k,, we find that
HO"|j1ja -+ jn)
1

~ (i) ® @ () = (75 5 (- D) @ ® (Z5 3 (<17 Ih)

1 1 1]) .
Z Z Z (_1)]1k1+32k2+---+Jnkn|k1>® |k2>®---® an>

k1=0 k2=0 kn=0

[y

§|I

2" -1

(_1)j1k1+j2k2+'“+]'nkn‘klkz - kn> — \/27 Z]'k’k>

|
]

2" k:k‘1k2-~~kn€{0,1}"
which concludes (3.18). o

Remark 3.97. Note that the qubit

S(10)+ €’|1)) = Ry|+) = RsH|0),

-

(3.17) implies that

2" —1

n 1 . . .
® R(;s |0> _ 61(31¢1+]2¢2+"'+]n¢n)’j>‘

3.7.2 Correspondence between tensor product and quantum cir-
cuits

The tensor product of quantum gates represents a unitary transformation when these quan-
tum gates are applied in parallel (at the same time), while the ordinary product of quantum
gates represents a unitary transformation when these quantum gates are applied sequen-
tially. Using the matrix representation of quantum gates, there is a way to understand the
overall effect of all quantum gates applied in a system. For example, the overall unitary

transformation given by the quantum circuit

— H

D 7Z—

(which produces the entangled quantum state |00y — [11)) when it applies on |00), as

S

30

explained in Section 2.4) is (I, ® Z)CNOT(H® I,), so using the matrix representation

e

and

H® L]

Loz - |

2

1

10
01

Jor-f

®1

0

I
I

el

L
1,

-

1
NG

1 0 0
0 -1 0
0 0 1
0 0 0

O = O =

0 1 0
1 1
0 -1 0
1 0 -1
0

0

O 9

-1

as well as the matrix representation of CNOT we find that the matrix representation of the

overall unitary transformation given by the quantum circuit can be computed by

o O O =

o= O O

o O O

o O O

O = OO

SO O

000
100
00 1
010
[L
ail
0
0110
V2

Shlmgl- ol o

)

—_

|
S

|
e R

4

_oul- o

Sl

1
0 = 0
IR
V2 V2
1oy L
V2 V2
0o L 0
V2 i

This matrix representation of the overall unitary transform immediately tells us how to

produce the EPR pair \1ﬁ(|00> + [11)): simply apply this circuit to the state |10) since

110} =10 0 1 0]" and

1, L
NG NG
o Ly _
V2

1
O\—@O—
1y L
NG NG

which corresponds to the EPR pair.

= Nlmsl- T

O = O O

Sl o ol

81

3.7.3 More examples

In the following examples, for an n-qubit system we always use the ordered basis B, =
{10),]1),12),--- ,|2" — 1)}, where, by writting k in terms of binary number (kiks - ky)o;
that is,

k=2""1k +2" %k + -+ 2,1 + 2%, ,

the k-th basis vector in B,, is |k — 1).
Example 3.98 (Matrix representation of swap operation). In an n-qubit system, we use

SWAP; ; (here we assume ¢ < j since SWAP; ; = SWAP; ;) to denote the swap operator
that swaps the position of the i-th and the j-th qubit; that is

SWAP, |71)® - ® |7,,)
= |z1)® - ®[7i-1) ® 7)) ® 2141 @ ®|2;-1) ® 7)) @ |2j41) @ B0 -
We note that SWAP; ; is perfectly defined operator as long as ¢ # j and 7,j < n. On the
other hand, the matrix representation for SWAP; ; is a 2" x 2" matrix which essentially
depends on the number of qubits in a qubit system that SWAP gate acts on. Therefore,
to denote the matrix representation of SWAP; ; one should use something like [SWAP; ;],,
to indicate the number n of qubits in the system. In the following, for simplicity instead of
[SWAP,,;J-LL we still use SWAP; ; to denote the matrix representation of SWAP; ; without
explicitly indicating (but knowing) the number n of qubits in the system under consideration.
We first consider the swap operator on a 2-qubit system, denoted by SWAP and defined
by
SWAP|2)® |y) = [y) ®|z).
Write |x) = a|0) + a1|1) and |y) = [y|0) + F1|1). Then
[2) @ [y) = (@0]0) + 1]0)) ® (Bo|0) + Bi[1))
= apf[0) ®[0) + apB1|0) @ [1) + a1 Bo|1) ® |0) + a1 51]1) @ [1)
= aof5|0) + apBi|1) + a150[2) + 1 B1]3)

and

1) @ |z) = (Bo]0) + B1[1)) ® (0|0 + a1 [0))
= af|0) ® [0) + aBi|1) ® [0) + 1 5|0) @ [1) + a1 51|1) @ [1)
= 0%[0) + a1 Bo|1) + o f1|2) + a1 f13)

82

so that
04050 04050
ap B a1 By
SWAP =
a1 By aoB
a1 3 a1 B

for all (v, 1), (5o, £1) on the Bloch sphere. Therefore, the matrix representation of SWAP

(relative to the ordered basis Bs) is a 4 x 4 matrix given by
10 00
SWAP =

o O O

010
100
0 01

The quantum circuit symbol for SWAP is

Similarly, on a 3-qubit system, there are three swap operators:

SWAP1,|7)® |y)®|2) = ly) @ [1)®|2),
SWAP;5|7) @ |y)®|2) = |2)®|2)®|y),
SWAP3|2)®|y) ®[2) = [2)® |y) ® |z).
Note that
SWAP, 2 = SWAP X I, and SWAP; 3 = I, ® SWAP
whose validity can be verifies by the quantum circuits:
|71) —— |w0) —— |71) ——— |wo) ———

|79) —HK— B |71) —K—

[T9) —F— = [v1) —F—

|73) ——— |79) ——— |73) —K— |79) —HK—

By the result of tensor product of linear maps, the matrix representations of SWAP; 5 and
SWAP, ; (relative to the ordered basis Bs) are given by

1

SWAP,, = SWAP®]I, = _

83

and

SWAP273 - 12 ® SWAP =

SWAP
SWAP 1

To compute the matrix representation of SWAP; 3 (on a 3-qubit system), we write
|2) = a0|0) + eu[1), [y) = Bol0) + Bi[1), [z) = |0y +71[1) and find that

SWAP 3|7) ® [y) ®|2) = [2) ® [y) ®|z)
= apB07[0) + a1 8o70|1) + @ S170|2) + a1817%13)
+ aoBom|4) + a1 Bonl5) + aofinl6) + a1 fin|7);

thus))))
aoBoY0 aoBoY0

a@ofomnt a150%

o1 o1

aofim a1517%

SWAPL3 aBovo| | aofomn

a1 Bom a1 Bom

a1817 ol

0415171 _0615171_

Therefore, the matrix representation of SWAP, 3 (relative to the ordered basis Bs) is given
by

SWAPLg ==

SO DO DO OO
[Nl o e o o)
[N Nel S = No)
S = OO OO oo
(ol el el s
SO R OO o oo
SOk OO O
_— O OO oo oo

0

0 0 0

We note that the matrix representation of SWAP; 3 can also be computed using the identity

SWAP, ;3 = SWAP,, - SWAP, ;- SWAP, ,.

84

[71) —F— |7
[w2) —1— = |x2)
lz3) —X— |z3) «—

Example 3.99 (The controlled-not gate). In quantum computing, the controlled-not gate
is a 2-qubit gate defined by

@y if|z)=[0),
|z)® (NOTy)) if |z) = [1),
where NOT is the NOT gate defined by NOT|0) = |1) and NOT|1) = |[0). Write |z) =
|0y + oy |1y and |y) = Bo|0) + B1]1). Then the controlled-not gate maps (ao|0) + a1[1)) ®
(B0l0) + B1[1)) to

a|0) ® |y) + a1]1) ® (1) @ |1)) = 0]0) @ (Bo]0) + Ar[1)) + an|1) ® (Bol1) + £1]0))
= ap0|0) ® |0) + apS1|0) ® 1) + a1 Fo|1) ® 1) + ca f1|1) ® |0)

!$>®\y>H{

oo
so that the controlled-not gate, in terms of qubit state vector representation, maps Z?g;
apf3y a1
to g?gi for all (ag, o), (a1, B1) on the Bloch sphere; thus the matrix representation
a1
(relative to the ordered basis Bs) is a 4 x 4 matrix given by
1 0 00
onor=| o 0
0010

The quantum circuit symbol for CNOT is

—e— control qubit

—p— target qubit
Example 3.100 (The TOFFOLI gate). In quantum computing, the Toffoli gate, also called
the controlled-controlled-not gate, is a 3-qubit gate defined by
[z)®y) ® (NOT|2)) if |z) = [y) = [1),

7)® |y) ® |2) — { 2R |y ® |2) otherwise .

85

The matrix representation of the Toffoli gate (relative to the ordered basis Bs) is a 8 x 8

matrix given by

CCNOT =

[=lelelelel =
SO O, OO oo
OO R OO o oo
_ o OO oo oo
O R OO O o oo

[l elNoNolololl S
(e eoloNollSE =)
DO oo+ OO O

0

The quantum circuit symbol for CCNOT is

—e— 1st control qubit

—e— 2nd control qubit

& target qubit

We always use e to denote a control qubit that activates the operation on the target
qubit when the value is 1. Another kind of control qubit that activates the operation on
the target qubit when the value is 0 is denoted by the symbol o. For example, the 2-qubit

quantum gate
[)®lyy iffz) = 1),

[2)® (X]yy) if [z) =10,
control qubit
1 target qubit

[2)®[y)®(X]2)) if [z) =10y and [y) = [1),
|lz)®|y)®|z) otherwise,

|@@@~{

is symbolized by

and the 3-qubit quantum gate

!x>®|y>®\Z>H{

will be symbolized by

——o0—— 1st control qubit

—e—— 2nd control qubit

—&p— target qubit

Example 3.101 (Entanglement). Consider the quantum circuit

36

— H

469_

The matrix representation of the quantum circuit above is

1 1 1
— 0 — 0 — 0 —= 0
100 0] v, V2 o vaoovz
otoof |V B 0 % R I
CNOT(HQ®I) = _
0001 |L o L o L o L
00 1 0] |Vv2 V2 V2 V2
LIRS U B IR T S
. V2 V2 L2 V2 _
so that the quantum circuit
0) —H
0) ——&—
produces an entangled quantum register \}§|00> + \}§|11> since
_1 1 —
— 0 —= 0 1
2 2 —
R S I 3 I
V2 V2 0 10
1 1 ol — | o0
o L o -1
v V2o -
— — 2
7 0 7 0 | V2

Example 3.102 (CNOT gate on n-qubit system). In an n-qubit system, we use CNOT; ;
to denote the contorlled-not gate whose control qubit is the i-th qubit while the target qubit
is the j-th qubit; that is,

CNOT,(|z1)®|z2)® - ®|2,))
_ { 2@ ® ;1)@ (X]z)) ®[Tj41) @ ® |20y if [1:) = [1),
1) ®: - ® |2n) if i) = 10),

where X is the NOT gate. We note that CNOT, ; is perfectly defined operator as long as
it # j and ¢,7 < n. On the other hand, the matrix representation for CNOT; ; is a 2" x 2"
matrix which essentially depends on the number of qubits in a qubit system that CNOT

gate acts on. In the following, when talking about the matrix representation of CNOT; ;,

87

we always assume that it is a 2¥ x 2% matrix, where k& = max{i, j}, and still use CNOT, ;,
instead of [CNOTM], to denote the matrix representation of CNOT, ;.
We first consider CNOT;,, on an n-qubit system, where 1 < 7 < n. The keys for

computing the matrix representation of CNOT,,, are the two identities

CNOTLn = IQ ® CNOTifl,nfl = blkdiag(CNOTi,Ln,l, CNOTifl,nfl) y (319&)
CNOT;, = SWAP;, - CNOT;, - SWAP; 5. (3.19Db)

The validity of (3.19) can be easily verifies by the corresponding quantum circuits:

\x'1> - \mfﬁ —_— o — e e
|xz> — — |xz,1> ———— lx.2> ;: — |z
|In> —b— |xn'_1> —b— lzny —P— |x;1> S

Figure 3.1: The quantum circuits to explain (3.19)

We first show that for all n € N,

CNOTl,n—l—l = blkd1ag(12, 12, c ,12, X, X, T ,X)) . (320)
~ ~~ -~ ~~ -
27—1 copies of Is 2"~ copies of X

To see (3.20), we note that CNOT; » = CNOT = diag(l, X), and (3.19) shows that

CNOT,; 3 = SWAP;, - CNOT,5 - SWAP; ,

— (SWAP®]I,) - (I, ® CNOT) - (SWAP ® L)

12 12 I2 12
I, X I, I,
Lo Iy I, X
I, X I, X

= diag(lg, 12, X, X) .
Suppose that (3.20) holds for the case n = m. If n = m + 1, by writing

Xom = blkdiag(X, X, -+ ,X)

2™m—1 copies of X

38

so that CNOT ;41 = blkdiag(lgm,Xgm), using (3.19) we have

CNOT; ;1 = SWAP;, - CNOT5,,,; - SWAP; ,
— (SWAP ®Iyn) - (I, ® CNOTY ,11) - (SWAP @ Ipm)

- X - blkdlag(12m7 IQm, }(27717 X2m> - blkdlag<12m+1 y X2m+1) .
om
X2m

Therefore, (3.20) is established by induction.
Using (3.19) we find that

CNOTLg = blkdlag(lg, 12, X, X) and CNOTQ’?) = blkdlag(lg, X, 12, X) .
The identities above and (3.20) further imply that

CNOT; ; = blkdiag(Is, I, I, I, X, X, X, X) , (3.21a)
CNOTQA = blkdlag(CNOTl’g, CNOTLg) = blkdlag(lg, IQ, X, X, IQ, IQ, X, X) > (321b)
CNOT374 = blkdlag(CNOng, CNOT273) = blkdlag(lg, X, 12, X, IQ, X, 12, X) s (321C)

and
CNOT, 5 = blkdiag(I, I, I, Iz, I, I, I, I, X, X, X, X, X, X, X, X)),
CNOT2,5 = blkdlag(CNOTlA, CNOT1’4)
= blkdlag(IQa 127 127 127 X7 X7 Xa X7 12) 127 127 127 X7 X7 Xa X))
CNOT375 = blkdlag(CNOTgA, CNOTQA)
= blkdlag(IQa 127 X7 Xa 127 127 X7 X7 127 127 Xa X7 127 127 Xa X))
CNOT4’5 = blkdlag(CNOTgA, CNOT3’4)
= blkdiag(ls, X, Ip, X, I, X, I, X, I, X, I, X, I, X, I, X) .
In general,

CNOTi7n+1 = blkdlag(IXn—i—la ce 7IXn—i—1) , ¥

~~

2¢=1 copies of IX,_;_1

89

where IX;, = blkdiag(I, ,I, X, -+, X).

2k copies of Iy 2% copies of X

Remark 3.103. Forn > 1, let [Uﬂ, Oio, " ,O'Z‘an| be the (2"~ + 1)-th row of the unnormal-
ized Walsh-Hadamard matrix H,, given in Definition 3.69, then

CNOT; ;1 = blkdiag (X 7on)/2 X0mow)/2 . X (mown)/2)
where X? = I, or with f denotes the matrix-valued function f(1) =1, and f(—1) = X,
CNOT; ;41 = blkdiag(f(aﬂ), floia), - 7f<0i2">) :

For example, note that

11 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
T I N N B N
1 1 1 1 -1 -1 -1 —1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

Since the (237! + 1)-th, (2372 4 1)-th and (2373 + 1)-th row of Hj are given by
(1111 -1 -1 -1 —-1],
(11 -1 -1 11 -1 —-1],
[1 -1 1 -1 1 -11 -1],

respectively, we find that

CNOT174 = blkdlag(lg, IQ, 127 IQ, X, X, X, X) s
CNOTQA = blkdlag(lg, 12, X, X, 12, 12, X, X) R
CNOT374 = blkdlag(lg, X, IQ, X, 12, X, IQ, X) .

The row vector [ail, Oy ,Um] defined above is called the symbol of CNOT, ;4 in this

lecture note.

90

Exercise 3.104. For given j,n € N with j < n, write a matlab® function which generates
CNOT;, given above. You may also want to try CNOT, ;,,, which is the matrix represen-
tation of an n-qubit system with i-th bit as the controlled bit and j-th bit as the target bit

(where 1 < 4,7 < n but 7 is not necessary smaller than j).

Definition 3.105. A quantum gate is called a multi-controlled gate if there exists some
qubits, called control qubits, such that each value of the control qubits corresponds to a

quantum gate acting on the rest of qubits, the target qubits.

Suppose a multi-controlled gate is an n-qubit gate with m control bits and (n—m) target
bits, where 1 < k < n. Rather than just applying a gate when all control bits are zero or
one, in a multi-controlled gate the applied operation to the target qubits can be different
for each of the 2™ possible classical values of the control qubits.

In the following examples, we consider the matrix representation of some special multi-

controlled gates.

Example 3.106. Consider a multi-controlled gate given by

[z)®@Uly) if [z) = 0),

A(lz) ® [y)) ={ Y@ Vy) if |z) = |1).

Here the first qubit |z) is the control qubit, while the second qubit |y) is the target qubit.
Write |2) = apl0) + a1|1) and |y) = 5o|0) + B1|1). Then with “probability” |ag|? A maps
2> ®|y) to |0)® (Uly)) and with “probability” |a;|* A maps |2)® |y) to [1)® (V]y)); thus

Alz) @ 1)) = 20l0) @ (Uly)) + en|) @ (V]y))
= [0) @ [(u11 8o + u1251)|0) + (u21 8o + u2af31)|1)]
+a|l)® [(’01150 + v1261)[0) + (v2180 + ’02251)|1>}
= ap(u1180 + u1261)]0) ® |0) + g (a1 fo + u201)[0) @ 1)
+ a1 (v11 80 + v1281)|1) ® [0) + a1 (va1 5o + v2251)|1) ® |1 ;

thus the qubit state vector representation of A(|z)® |y)) is given by

ao(u11 8o + u1251) U1 U2 ap By
A _ ao(u21 B + uz2f1) _ U2 u22 apB
[(2@ |y>)} ai(v1160 + v121) v vi| |aafBo

a1 (va101 By + v 1) var V| |oufh

91

In other words, the matrix representation (relative to the ordered basis) is

Uy Uiz
U1 U2

[A] = = blkdiag(U, V) .

V11 V12
V21 V22

Since U and V are unitary, we find that A is a 2-qubit gate. This kind of qubit gate is called
a quantum multiplexer.

Next we consider a multi-controlled 3-qubit gate in which the control qubits are the first
2 qubits. We first consider the map A defined by

|2) ®[y) ® (Unolz)

(if [2)®1y) =10)®10),
) ®y) ® (Uni|z)

(

(

if [)®[y) =10)®1),
if [)®[y) = [1)®10),
if [)®@[y) =) ®[1),

A(lz) ® 1y ®12)) = 12) ® |y) ® (Uro|2)

) ®y) ® (Uni]z)

~— — — —

where |x), |y), |2) are all 1-qubit, and Uy, Uy, Uro, Uy are 2 x 2 unitary matrices. Similar
to the computation above, if |z) = ap|0)+ a1|1), |y) = Bol0)+ F1|1), and |2) = 40|0) +11|1),

we have
1

Al @) ® 1) =) aiBil) @15 ® (Uyl2))

i.j=0

where the qubit state vector representation of the right-hand side is

_ - " 1o
o
080 BN
OéoﬁoUoo\Z> Uoo a0 [Yo]
04051U01|Z> _ Un ot ! At |
a1 BoUro|2) Uto o Yo
OélﬁlUll‘Z> Ull 170 L 71]
- " -
o
I 151]

Therefore, the matrix representation of A is

92

In general, we can consider the multi-controlled (n + 1)-qubit gate L given by

L{z1)®- - @) ®[n11))
2@ @ 2n) @ (Uo-oltns1)) if 1)@ @zn) =[0)®---®10),

)@+ @2y ® Vra[tngs)) I [22)® - ®lza) = D@ -®1).

where Uj,..;,’s are 2 x 2 unitary matrices for all ji,-- -, j, € {0,1}", and the control qubits

are the first n qubits. By identifying (j; - - - jn)2 with j or more precisely,
j = (]1 e]n)2 - 2n_1j1 + o +2jn—1 +]na
we write Uj,...;, as U; and |j1)® -+ - ® |j,) as |j) so that L can be simply written as

L|z) ® |zni1)) = 1) ® (Ujlania) if [2) = 15).

i :]
. . s |ZL’> = Oé()|0>+ . -+a2n_1\2 —]_> and |ZL’n+1> = 60|0>+/81|1>
@ 0

Ugy Ugg

Then for 0 < 5 < 2" —1,

Suppose that U; =

Uil i) = (uff) Bo + ulh) B1)|0) + (ul) Bo + usy p1)| 1)

which implies that

Qo (“11)5 + “12 ﬁl)
_ i} Qo (“21)50 + “22 51)
o {gﬂ a1 (“11)60 + U12 ﬂl)
{50] “ (u21)60 + uy By)
a
R ()
: @ (“11 50 +uyy fr)
{501 Q;j (“21 /80 +uy)51)
Qgn_q :
L B
a2n—1((2 50 + u% _1)ﬁ1)
| (on 1 (U21 ﬁO + U22 71)/81)_

93

Therefore,

w0 Cra

L |]
v o]
Ugy Up

L(|z) ® |zn11)) =

) (21771)) <2”7‘l)
Uqp Uqs Qon_1 Bo

(2”71) ’ (2""71)

The 2"t x 2"+ matrix is the matrix representation of L.

Example 3.107. Similar to the previous example, in this example we consider a multi-
controlled gate given by
[z)@Uly) if [z) =0),
)@ Vly) if [z) =|1).
where the control qubit |z) is a 1-qubit state, the target qubit |y) is an n-qubit state, and
U, V are both n-qubit gates (so that [U] and [V] are 2" x 2" unitary matrix).

Write |z) = ap|0) 4+ aq|1), ly) = Bol0) + -+ - + Ban_1|2" — 1), and |[¢) = |2) ® |y). Then

LYy = ao|0) @ [U(Bo]0) + - - - + fan_1[2" — 1))]
+ 051’1>® [V(50‘0> + -+ 52n71‘2n — 1>)]

L2 ® |y)) = {

Since the matrix representation of L satisfies

Bo Bo
o%) : aolU] :
[L] : :an_lz — :ﬁQn_l:
Bo Bo
o | alV]|
L [P] | | Bon—1] |

to find the matrix representation of L, we let oy = 8,1 = 1 for some fixed ¢ while o; = 3; = 0
if 1 # 0 and j # £ to obtain that the ¢-th column of [L] is given by

160 = o ove.o= 5]

94

and let a; = By—; = 1 for some fixed ¢ while o; = 8; = 0if ¢ # 1 and j # £ to obtain that

ez 0=} eveo =)

where 0,,, denotes the zero vectors in C*". This shows that [L] = blkdiag(U, V).
In general, if a multi-controlled (n + 1)-qubit gate L is defined by

[z) @ Uolyy if [x) = 10),

x)® U, if |x)y=|1),
L ®) |z | y) |>. 1)

£)® Une_ly) if [= |2 — 1)
that is, the controlled qubit |z) is an m-qubit state and L(|z)®|y)) = |z)@U;|y) if |x) = |j).
Then the matrix representation of L is given by

[L] = blkdlag(Uo, Ul, T ,Ugm_l) .

since by letting |z) = |k — 1) and |y) = |[¢ — 1) for some 1 < k < 2™ and 1 < £ < 27"+
we have

[L](:7 (k - 1)2m + E) =eQ® U(?£))
where {e;, ey, - ,eyn} is the standard basis of C2".

Example 3.108. In Example 3.106, we consider the multi-controlled (n + 1)-qubit gate in
which the control qubits are the first n qubits. How about if the control qubits are the last
n qubits? Consider multi-controlled (n + 1)-qubit gate L given by

(Uo‘..0’.730>) X |.%'1>® - ® ‘$n> if ’$1>® e ® |xn> = ’0>® e ® |0>7
L(lzo)®|21)®- - @ |zn)) = : :

where Uj,..;,’s are 2 x 2 unitary matrices for all jy,--- , j, € {0,1}", and the control qubits

are the last n qubits. By identifying (j; - - - j,)2 with j or more precisely,
J= 0 dn)e = 2"t 21+ s
we write Uj,...;, as U; and |j1)® -+ ® |j,,) as |7) so that L can be simply written as

Llzo) ® |2)) = (Ujlzo)) ® |z) if |z) = [5).

G, G

u
Suppose that U; = 8) 1;
Ugy U22
Then and for 0 < j < 2" —1,
Ujlzo) =
which implies that
b
(%) :
Ban—1
|
Bo
(e%1 :
R
Therefore,
(0
Ugl) "
Uyq
[L(lzoy®[2))] = | ()
Ugy
o

(uy ™"

[(ug "

[(Ugl

((4)

Ug1

)ao—i—u

(ugjl)ao +u

2
oo + u§2

(ugi)ao + u

g+ U

oo + u522”—1)

(Un oo + U12 041)|0> + (u21 ap + U22 041)‘1>

52)041),30 |
%)Oél)ﬂj

)041)ﬁ2n—1

29 041)50

éjz)al)ﬁj

Oé1)52n—1_

(27—
GP)

; (2!/71)
Ugo

&%)

aq

Bo
B

Bo
A

| Bon_1]

| Bon1]

] [z0) = ag|0) +ay[1) and |z) = Bo[0) + - - + Bon 1]2" — 1).

The 2" x 2"+ matrix is the matrix representation of L. In particular, if U; is a rotation
. 0; —sin 6,
matrix of the form U; = R(20;41) = AR AR (here we label U from 0 to
S1n 9j+1 COS 9j+1

96

2" — 1 but label € from 1 to 27), then

[cos 0, —sin 6
cos b, — sin 6y

c0S Bon — sin Oy
sin 6, cos 0,
sin 0y cos B

sin fon c0oS Oon

which takes the block structure [¢ 5

g B C } . A matrix of this form will play important role
in Section 3.8.3.

Example 3.109. In this example we consider a special multi-controlled (n + 1)-qubit gate
A; defined by

Aj(l2) ® - ® [n)) = [20) @ - ® |7;-1) ® (R:(0k)[25)) ® |2j41) ® - @ [2n)

if (zo---@j_12j41 - xn)2 = k, where R, is the rotation about z-axis given by

6—1’0/2 0
R.(0) = [0 62‘0/2] :

This is a multi-controlled gate with n control qubits and the target qubit is the |z;) qubit,
and is sometimes denoted by F7,|(R.) (since the target qubit |z;) is the (j + 1)-th qubit
counting from the highest/left-most qubit).

Example 3.106 establishes the case 7 = 0, while Example 3.108 established the case
j = n. Now we consider the case 1 < j < n. We first consider the case j = 1. In this case,
we note that A, = SWAP,, ;.41 - A, - SWAP,, ,,.1, where the operator SWAP,, ,, ;1 swaps
the position of the n-th and the (n+1)-th qubit, and A,, is the multi-controlled (n+ 1)-qubit
gate introduced in Example 3.106 with Uy = R, (). Example 3.106 shows that the matrix

representation of A, is given by

[An] = blkdlag(Rz(ﬁl), Rz(eg), ce ,Rz(egn))
— diag(e_wl/g,€i01/2,6_i02/2,6i62/2, L. ,6_102”/2, ei@gn/?) :

97

thus by the fact that

SWAP
SWAP
SWAP,, .1 = In 1 ® SWAP =
SWAP

and

SWAP - diag(a, b, c,d) - SWAP

1 a 1 a
= 1 1 b . 1 1 — C b = dlag(a’ C, b7 d) s
1 d 1 d
we conclude that
[A,—1] = SWAP,, .11 - [A,] - SWAP,, ;.11
'e—i91/2 7
o—i02/2
oi91/2
i02/2
_ o—i03/2
e—i94/2
i03/2
ei94/2
We note that [A4,_4] takes the form
blkdlag(le Q?a e 7Q2"*1))

where for each 1 < k < 2n—1’ Qr = diag(e—i@zk_1/27 e—i@gk/27 ei02k—1/2, ei@zk/2) for some

01, -+ ,0m € R.
In the following, for simplicity we will only write the sign and the sub-index of the angle

to express the matrix. For example, we will write
[An] = dlag(ila +]-7 *27 +27 Y 72n’ +2n)
and

[A,_1] = diag(—1,—2,+1,+2, -3, —4,+3,+4,--- , —(2" — 1), 2", +(2" — 1), +2").

98

Now we consider A,,_5. Similar to the previous case, we have

An_g = SWAPn—l,n . An—l : SWAPn_Ln .

Note that

SWAP, 1, =Ion2@SWAP ® I,

= blkdiag(SWAP ® I,, SWAP ®I,,--- ,SWAP ®I,)

and

(SWAP ® I,) - diag(a, b, c,d, e, f,g,h) - (SWAP ® I5)

L
I
= I,

~~

—

2"=2 copies of SWAP ® I

I

diag(a, b)
diag(c, d)

diag(e, f)

[diag(a, b)

I

diag(e, [)

diag(c, d)
diag(g, h)

Therefore, [A,_s] is obtained by

diag(g, h)

= diag<a7 ba €, fa G, da 9; h) :

the fifth and the sixth entries in each group;

grouping the diagonal entries of [A,,_1] in groups of successive eight entries,

and exchanging the pair of the third and the fourth entries with the pair of

thus we conclude that

[A,_s] = diag(—1,—-2, -3, —4,+1,4+2,+3,+4, -5, —6, -7, —8,+5, +6, +7,+8,- -+) .

99

We note that [A,_»] takes the form

blkdiag(Q1, Q2. -+ , Qan—2)
where for each 1 < k < 272,
Qi = diag (e Pm-9/2 ¢ P2/2 o=iBukr/2 =i0ik/2 (iuks/2 ci0ikoa/2 (iunor/2 i0an/2)
for some 6y, --- , 05 € R.

In general, for each j we have A;_; = SWAP; ;- A; - SWAP; ;;; and the fact that
SWAP; ;11 = Iy-1 ® SWAP ® Lyn—; implies that [A,_;_;] is obtained by

grouping the diagonal entries of [4,_;] in groups of successive 2772 entries,
dividing each group into 4 blocks of consecutive 27 entries, and exchanging
the two blocks in the middle

so that
[A,_;] = diag(—1, - - - Y . X _(Qj +1),--- 7_21'4-174_(2]' +1),--- 420).
The identity above can be proved rigorously by induction.

Definition 3.110. An (n+1)-qubit gate L is called a multi-controlled rotation gate of type

F]”H(Ra) if there exist a unit vector a € R? and real numbers ¢, - - - , ¢an_1 such that
L(|z0) @+ ®lan)) = |20) ® - @ [1j-1) ® (Ral¢r)[2;)) @ [2j41) @ -~ ® |n)

if (xo - xj_1Tj41- - Tp)2 = k, where for unit vector @ = (a,,ay,a,), Rq is a 1-qubit gate

given in Definition 2.10.

Remark 3.111. One possible quantum circuit for a multi-controlled rotation gate of type

F? 1 (Ra), in term of 1-qubit quantum gate R4(¢), is given by

o) 7~
I

|Tn—3)

—e

O—O0— —O

[Tn-1)

1 1
) T 1
| |

[2n) —{Ra(¢0)—{Ra(¢1)—{Ra(d2)Ra(d3)— - - - —Ra(d2n—1)—

and quantum circuit for a multi-controlled rotation gate of type F'(R,) can be constructed

using SWAP gates and the quantum circuit given above.

100

3.8 Unitary Decomposition

Unitary decomposition is the process of translating an arbitrary unitary gate into a specific
(universal) set of single and two-qubit gates. Unitary decomposition is necessary because
it is not otherwise possible to execute an arbitrary quantum gate on either a simulator or
quantum accelerator. This makes it a required feature for algorithms that use any type of
gate that is not supported by the target platform, or just produce an arbitrary unitary gate
that will need to be translated.

In order to decompose all possible unitary matrices into quantum gates, a universal gate
set is selected. This means the decomposition will result in circuits with (only) the following
three gates: rotations around the Y and Z axis by an arbitrary angle, the R,(6) and R, ()
gates, and the controlled not, the CNOT gate:

0 . 0) 1 0 00

cos - —sin— —i0/2
B 2 2 | 0 10100
RZI(e) - 0 0) RZ(H) - [0 eig/g) CNOT = 000 1
Sty €085 0010

3.8.1 1-qubit gate decomposition

We first focus on expressing 1 qubit gates (or 2 x 2 unitary matrices) in terms of product

of qubit gates from the set
{R,(0),R.(6),Ph(6) |6 € R},
where Ph is the global phase gate given by Ph(f) = diag(e?, e?).
Theorem 3.112. For every 1-qubit gate U, there exist real numbers d, 6, & and n such that

Proof. Let U = [¢

b

p 1 be a 2 x 2 unitary matrix. Corollary 3.67 implies that there exists
c

0 € R such that

det(U) = €29 (3.22)

Define V = e ®U. Then V is also a unitary matrix; thus using the fact that V1 = V~! and
det(V) =1 we find that V' takes the form

v=[5 3]

101

This further implies that U takes the form

U= a b _ i a —f
c d Jo e ’
2 2) 0 W o3 0
The fact that |a|* + |5]* = 1 allows us to set o = e cos 5 and § = e sin 3 for some p, v

and 0 e R. Let ¢ =v—pand n=—p —v. Then

[0
E _ _ : _ _
e~is () cos 5 sin 5 e~m/2
L sin 3 coS 3
0 —
e"%/2 cos e~%/? sin 5 [e—in/2]
- . in/2
¢i€/2 sin ¢i€/2 cos g 0 e
B ZﬁTTl 0 i ;77 9 T _
B e cos§ —e s1n§ —la _ﬁ]
o el 2] . 0 = _
i 6252" sin 3 e’zégn CoS 5 | B a
which concludes the theorem. o

e Algorithm of 1-qubit gate decomposition
Let U be a 1-qubit gate (or equivalently, 2 x 2 unitary matrix).
Step 1: Find € R such that det(U) = *?.

: i 4 —i6 i i 0 —i6
Step 2: Find pu,v, 6 such that e cos 5 =ae and e" sin 5 =ce .

Step 3: U =Ph(0)R.(v —)R, ()R, (—p — v).

Example 3.113. Consider the decomposition of the X-gate. We follow the procedure give

above.
Step 1: Since det(X) = —1, we choose § = —g so that det(X) = 9.

Step 2: Since a = 0 and ¢ = 1, we choose § = 7 and v = g (and g can be given arbitrarily,

i

INIE]

. 9 , — .
so we choose = 0) so that e cos 5= 0 = ae® and €™ sin g =€r= ce™®.

102

Step 3: X = Ph(—g)Rz(g)Ry(ﬂ)Rz(—g) and we verify this identity as follows:

Ph(~2)R. (5)Ry(m)R. (1)

B e*l’ﬂ'/2 0 efiw/4 0 0 —1 6z'7r/4 0
- 0 67i7r/2 0 62‘7r/4 1 0 0 efiw/4

_ €—i37r/4 0 0 _e—iﬂ'/4 _ 0 1 X
L0 e gt 0 SLr o)

3.8.2 Singular value decomposition

Recall the spectral theorem from linear algebra given below:

Theorem 3.114 (Spectral). Let A be a Hermitian matriz; that is, A = A". Then there

exists unitary matriz U and a real diagonal matriz D such that A= UDUT.

We note that the columns of U are eigenvectors of A and the diagonal elements of D are
eigenvalues of A. In fact, if A= UDUT, then AU = UD so that if v; is the j-th column of
U and) is the (4, j)-entry of D, then Av; = \;v;.

Remark 3.115. The spectral theorem extends to a more general class of matrices, the
normal matrices. One can show that A is normal (that is, AAT = ATA) if and only if there
exists a unitary matrix U and a diagonal matrix D such that A = UDUT. Here the diagonal

matrix D can be complex.
Let A be a complex m x n square matrix. Then ATA € C"*™ and AAT € C™*™. Moreover,
1. ATA and AA" are both hermitian since
(ATA)T = AT(ANT = ATA and (AAN)T = (ANTAT = AAT,
2. ATA and AAT are both positive semi-definite since

z, ATAz) = (Ax, Ax) = |Az|* = 0 VaeeC"
(

and

z, AATx) = (AT, ATz) = | ATz|? = 0 VeeC™.
<

103

Therefore, Theorem 3.114 implies that there exist Ay > Ay = --- > X\, = 0 and an orthonor-

mal basis {v, vg, -+, v,} of C" such that
ATA’le:/\k’l)k Vl<kz<n

Let o, = v/ A, and r = #{1 <k < n|)\k > O}; that is, ATA has r non-zero eigenvalues.
Define

1
u, = —Awvy, forl<k<r.
Ok

Then
1. u, # 0 for all 1 < k < r. Moreover,
|Av;[* = (Aw;, Avy) = (w5, ATAv;) = (vj, Aoy = ;5

thus the fact that ATA and A have the same null space implies that {vrﬂ, s vn} is

an orthonormal basis of the null space of A.

2. {uy, -+ ,u,} is an orthonormal set since

1 1 A o
<uk, ’u,g> = —<A’l)k, Av4> = —<’l)k, ATA’Ug> = _é <’l)k, ’Ug> = _2 5]% .
01Oy OLOy 00y O

3. {uy, - ,u,} are eigenvectors of AAT withe corresponding eigenvalues A, - - , \, since
for1 <j <,
; i1 1 i 1 1
AATu; = AA (U—Avj) = — A Av; = —Av;) = A~ Av; = A
; A .

0 J J

By the fact that 7 = rank(ATA) = rank(A) = rank(A") = rank(AAT), the nullity (that

is, the dimension of the null space) of AAT is m — r; thus there exist an orthonormal

set {11, -, Uy} in the null space of AAT. Then
AAT'u,j:a?uj Vi<j<m.
Since {t, 1, , uy} are eigenvectors of AAT (corresponding to eigenvalue 0), we find

that {uy, -+, u,,} is an orthonormal basis of C™.

104

Let U = [ulfugf um] and V = ['0151723 ffvn},aswellas
" .
02
Y= o,
0
Then
AV:A[vlf'vgf fvn} = [AvlfAvgf fAvn}
= [0'11111;0'21112; O'T’U,TO 0}
o .
02
= [u i up i Ty, h o =UX.
0
The numbers o1, 09, -+ ,0, are called the singular values of A. The fact that U and V

are unitary shows the following

Theorem 3.116. Let A be a complexr m x n matriz. Then there exist unitary matrices

UeCm™™ and V e C™™™ as well as an m x n matriz X2 of the form

01

02

where o1 = 09 = --- = 0, > 0, such that A=UXVT.

Remark 3.117. The decomposition A = UXVT in Theorem 3.116 is called a singular
value decomposition of A. We note that since {u,;1, -, Uy} is a chosen orthonormal

basis of the null space of AAT, the singular decomposition of A is not unique.

105

3.8.3 The CS decomposition

Theorem 3.118. For any 2 x 2 partitioning

C1 Co
o-[® %] avmnin 829
Qa1 Q2)

of an n x n unitary matriz Q), there exist unitary matrices Uy, Uy, Vi, Vo such that

T ol ;
C -5
ul o Qu Q2 Vi 0 O -1
vtQv =| ! ' = ‘ ,
“ {0 Ug}{Qm Q22}{0 VZ} Os I
S C
I I Of]
where C and S are diagonal matrices taking the form
C = diag(v1,72,"** »7s) I>mz2m=z-279>0, (3.24a)
S = diag(oy, 09, -+ ,04), 0<o;<0y<--<o,<1 (3.24b)

and satisfying C* +S? =1, and Oy, O. are matrices of zeros, and depending on Q and the
partition, may have no row or no columns. Some of the identity matrices may be nonexistent,
and no two of them need be equal. The four C and S matrices are square with the same

dimension, and may be nonexistent.

Proof. Choose unitary matrices U; and V; to give the usual singular value decomposition of
(11, resulting in Dq;. Choose unitary matrices Uy and V5 so that Dy = UgQgﬂ/l is lower
triangular with non-negative real entries on the diagonals ending in the bottom right corners
and D, = U 1T (Q12V5 is upper triangular with non-positive real entries on the diagonals ending

in the bottom right corners. Define

oo @n Qm}[% 0}_{1911 D12]
D= |: 0 U;:| |:Q21 QQQ 0 ‘/2 N D21 D22 ' (325)

Then D is unitary; thus the fact that any column (or row) of D has unit length implies that

no singular value of Dq; can exceed 1. Therefore, Dy, takes the form

Ikxk
Dll = Csxs
Oqu

106

for some C taking the form (3.24a), and the orthogonality of columns of D and the orthog-
onality of rows of D further show that Dy and D5 must take the form

OkX(CQ—S—p) O(cl—s—q)xk
D12 - _Ssxs) D21 = Ssxs s (326)
-1 I

pPXp axq

where p =11 —k — s and ¢ = ¢; — k — s. The fact that each column and each row of D has

unit length also gives the form of Dy so that

K L
S M N
I O]

for some (19 — s —¢q) x (ca — s —p) matrix K, (1, — s —¢q) x s matrix L, s x (¢ — s — p) matrix
M and s x s matrix N. The orthogonality of the second and the fourth blocks of columns
shows that SM = Oy (cy—s—p); thus M = Oy (c,—s—p) since S is non-singular. Similarly, the
orthogonality of the second and the fourth blocks of rows shows that L = O,,_s_¢)xs. Next,
from the fifth and the second blocks of rows, SC — NS = O, so N = C and we obtain that

Finally, note that 1o —s —q¢=7ro4+k —cy =co+k —1r;y = co — s — p so that K is a square
matrix. Together with the fact that DD = DD' =1, we find that KK" = KIK = I so that
K is unitary and can be transformed to I without altering the rest of D by replacing U,
with Uy blkdiag(KT, Iixs, I;xq) in (3.25). o

Exercise 3.119. Write a function named CSD in matlab® in the format
[U,D,V] = CSD(Q)

which outputs the CS decomposition of a unitary matrix Q (so that D = UTQV takes the

form [(é _g } with C and S satisfying (3.24)).

107

Remark 3.120. Suppose that @ is an n-qubit quantum gate (that is, @ is an 2" x 2"
unitary matrix). By partitioning @) into 2 x 2 subblocks with equal size (that is, r; = ry =
c1 = ¢g = 2"71), Theorem 3.118 implies that there exist 271 x 2"~! unitary matrices U,
Us, V1, Vs (so that they are (n — 1)-qubit gates) such that

o= [0 0][C -8 Voo
L0 U |lS Cllo V
for some diagonal matrices C and S of the form

cos 0 sin 6,
C= and S = 5

€08 Ogn—1 sin fon—1

where 0 < 07 < 0y < -+ < fyn-1 < —. In terms of quantum circuits, the case n = 3 can be

m
2
illustrated as follows:

[Ry (201) [Ry (20) [Ry(205) |~ Ry (20)

Vil (v Ui | | U

Figure 3.2: The CS decomposition in terms of quantum circuits

The 2-qubit gates Uy, Us, VIJr and VQJr can be further decomposed. For example,

] - o R, (2¢1) F Ry(2¢2) ?
T |

— — — ViV l Un Ui —

for some 0 < ¢ < ¢y <
so that

and quantum gates with matrix representations Vi, Vio, Uq1, U

oS

108

| T L]
— - Ry (2¢1) 1 Ry(2¢2)
0 |
— - — \/{f1 — V{r2 O Un Uiz

Figure 3.3: The decomposition of the controlled VlT gate

Combining all these quantum gates together, we see that the CS decomposition essentially

provides a way to express an n-qubit gate as the product of multi-controlled gates.

3.8.4 Decomposition of arbitrary quantum gates

By Theorem 3.112, any 1-qubit gate can be decomposed further as the product of rotation
gates Ry, R, and phase gate Ph. Therefore, if the quantum gates VIT1 and Vfg in Figure 3.3

can be expressed as
Vih = Ra(&)Ry (m)R:(01)Ph(81) Vi = Ra(&)Ry (1) R=(02)Ph(32)

then the first two controlled V1 gates can be further decomposed into
[[|

— Ph(61) [R.(01) [Ry(m) [R:(&) 7 Ph(0s) = R:(02) = Ry (1) F R=(&2) —

and so on. Without any further modification, we can express an n-qubit gate as the product
of multi-controlled rotation gates, at the expense of some not implementable phase gates.
In this section, we talk about how to “cancel out” these phase gates and make an n-qubit
gate indeed the product of multi-controlled rotation gates.

Before proceeding, we note that if P is a 277! x 27~! diagonal unitary matrix; that is,
P takes the form

P = diag(eml, e ,e“"?”*l) for some aq, -+ ,agn-1 € R,

el el ls el e

then

109

Therefore, if P is a 277! x 2"~ diagonal unitary matrix, then P' is also a 2771 x 271

diagonal unitary matrix so that the decomposition above implies that
o— [0 0[P 0 Pt c -s][v o
|10 U, ||0 P 0o P||s C 0 V)
fouo 0[P o][C =s][P 07V o
0 U |lO0O PSS C|]|[O0 P! 0 Vil

The diagonal unitary matrix P will be chosen to “cancel out the phase gate” so that the

Uy 0} [P

0 Usl |0 P} is a product of multi-controlled rotation gates.

matrix {

Let U be a n-qubit quantum gate. By Remark 3.120 U can be decomposed as

U = Un 0 Py 0 Ch —Sh P 0 Vo 0
0 U112 0 Plll 5111 0111 0 P111T 0 V212T ’

where P}, is an arbitrary 2! x 27! diagonal unitary matrix. Write PJV,\! = U}, and
PV = UL, Then

U — Uy 0 P, 0 Ch, —Sh Uy 0
Lo UL 0 Py s ¢ 0 Uy |’

and the decomposition can be applied recursively to the sub-matrices U]ka until a 2 x 2

block-diagonal form is encountered. For example, we use the CS decomposition to write
1 _ 71712 p2 42 p2f /2t 1 _ 772 p2 42 p2fys2t
Uy = Ui P AL P Vina Uiy = Uiy Piyy A1 Py Viga s

so that by defining U1212 = P121T1V121T2 and U1222 = P122Tlv122T2a

[Uh 0 }_ [UR, P, A3 U, 0
0 U i 0 Utar Pl AT Uty
[U1211 O P1211 O A%l O U1212 O
B U O I (T = O B YV RZC A N RV I

We note that in principle we need to specify P}y first before we can decompose Uy, and Uy,
further since Uy, and U), depend on P},.

In general, with U denoting U, for 1 < i < m and 1 < j < 27!, we use the CS
decomposition on each block of U ;’1 to write

i1 pri A A " it
U = Ugj—IPQZj—lAZQj—IPQijIVYZZj)

J

110

where Uj; ;| and Uj; = ng._lvgj are block diagonal matrices consisting of 2° blocks of

271 x 2"~ unitary matrices, Pzijf1 is a block diagonal matrix of the form

Pj;1 = blkdiag(Q}, Q3 @4, Q3.+, Qyir, Q5i1)
for some 2" x 2"~ diagonal unitary matrices Qi, ---, @b, to be determined. We also
note that Us; depends on P;_;.

Define Pj; = P;’l and A}, = Aé.’l. We then have the following sequence of decomposi-
tion
U=UP' AU, = UlPIAU; P; AUz PZ ASU; = UL PEATUS Py AsUZ U;
= U P}ABUS P ASUS PP ASUR PP AUS PR AU U2P3AZUS =
= U PPt AT Uy T Pyt AT Uy Py AT U P AR U
P |

= (11 lf?_1]7?_114?_1)175n - (3.27)
j=1

Here the upper index denotes the level of recursion, whereas the lower index denotes the

position of the matrix within the resulting matrix product. In (3.27),

1. U]’?’1 takes the form
ur—t = blkdiag(Uy, Uy, - - -, Ugn-1)

J

for some 2 x 2 unitary matrices Uy, --- , Ugn—1.

2. For each j € N, let the number ~(j) indicate the position (counting from the lowest
bit) of the right-most non-zero bit in the binary presentation of the number j. In

other words, for each j € N, v(j) is the unique integer satisfying
=202k —1) for some ke N.

Then PP~' = Pril. e = Py and A7t = Ay o = A5 which imply

that P?~" and A7~" appear first time in the (n—~(j))-th recursion of decompositions

and do not appear in any previous recursion of decompositions. Therefore, P}~ ! takes

the form

Pjn_l = blkdlag(@la Q17 e QQ"*’Y(J')*U QQ"*’Y(j)fl)
for some 270) x 270) diagonal unitary matrices Qq, - - - , Qon—()-1, and A?_l takes the
form

_ . Cr =51 Cy =5y Con—()-1 —Sgn—()-1
Ml—MMm<{ }[}~~{ . (3.28
J & 51 01 i SQ CQ i SQn—'y(j)—l CQn—w(j)—l i ()

111

where for each 1 < k < 270~

Cy, = diag(cos 6y, ,cos6h,;)) and S, = diag(sin6y, - ,sind)
for some 0 < 0f < 05 < --- < 0%) < g We note that A;‘_l is indeed a multi-
controlled gate of type F,' . (R,).

3. Pj”_1 can be chosen according to U;‘_l so that U;‘_lPJn_l is a product of multi-
controlled rotation gates (which will be explained soon). On the other hand, for each
1 < j < 2™ — 1 the block diagonal matrix U;ﬁ:ll depends on P! for all 1 < k < j;
thus we need to specify P!, PP, - successively in order to complete the decom-

position.

Remark 3.121. In matlab®, 4 can be implemented by
7(j) = min(find(de2bi(j) == 1)).

Now we determine P"'. Since U~ is a block diagonal matrix consisting of 2"~ blocks

of 2 x 2 unitary matrices U}, ", - - Ugnll, that is,
n—1
Uty .
Uiy
n—1 __ 12
Ul -)
n—1
U12n 1

by Theorem 3.112 for each 1 < j < 2"! there exist §;,¢;, 0;,n; such that

Uy = Ra(&)Ry ()R (n;)Ph(d;) ;

R.(&1) R, (61) R.(m) Ph(d,)

Rz(£2”—1) R,y(egn—l) Rz(772n—1) Ph(dQn—l)

52]'_1 + (52]'

For each 1 < j < 2"72 let a; = — 5

(52]' — 52]'71' Then

. Define Q; = diag(e',e') and ; =

Ph(d9,-1)Q; = dlag(Zﬁj/Q’e—iﬁj/Q) and Ph(6,;)Q; = dlag< Zﬁj/Q’eiﬁj/2>

112

so that
blkdiag(Ph(daj-1), Ph(ds;)) - blkdiag(Q;, Q;) = diag(e /2, e=Hi/2 ¢il2 ¢1hil2)
Therefore, by defining P! = blkdiag(@l, Q1,Q2,Qa, -+ ,Qon-1, QTH) we have

blkdiag(Ph(él), e ,Ph(52n71))P1”‘1
_ diag(e—i51/27e—iﬂ1/2’ eiﬁl/Q’ ei61/2, e—z‘ﬁz/{e—iﬂa/{eiﬁa/??eiﬁz/?? .

’ 6—1/3271—2/27 6—1,327172/2’ 62527172/2’ 616271,72/2))

which, by Example 3.109, is a multi-controlled gate of type F*(R,) (with 65,1 = 6s; for
all 1 < j <2"7'). In other words, by multiplying P/ on the right-hand side of the block
diagonal matrix generated by the phases of each 2 x 2 unitary matrix, we obtain a multi-
controlled gate whose target qubit is the (n — 1)-th qubit. This shows that U 'P" ! is a

product of multi-controlled gates in which the rotation gates involved are R, and R..

Suppose that P!, - ,Pjn__ll are specified so that Us~!, - - ,U]n_1 are determined ac-
cordingly. Since U;“l is also a block diagonal matrix consisting of 2"~ blocks of 2 x 2
unitary matrices U j”fl, R Uj’g;fl, by Theorem 3.112 we can decompose U j”_l as

U~ = blkdiag(R.(&1), -+ Ra(€on1)) - blkdiag(Ry (61), -+, Ry (0an-1))-
- blkdiag(R. (1), -+, Rz(n2n-1)) - blkdiag(Ph(dy), - - -, Ph(yn-1))

for some &, -+ ,&on—1, b1, ,Oan—1, M1, -+ ,Mon—1 and dy, - - -, don-1. We note that these &;’s,
0,’s, n;’s and d,’s are in principle different from those values used in the decomposition of
Ut U7

For 1 <k<n—7(j)—1and 1< ¢< 2, define

1
Qg—1)270) 4 = *5 <5(k_1)27(j)+[4+?1} + 6(k_1)2w(j)+27(j)—1+[“?1]))

0414 . . . S 041
where [%} in the sub-index denotes the largest integer which is not greater than L

Let

Q. = diag(em2<k*1>7“>+1, e)

and

f)]ﬂ_l = blkdlag(Qh le Q?a QQa B QQ”*’Y(J')*U QQ"*’Y(j)*l))

113

we find that blkdiag(Ph(6;), -, Ph(dan-1))PP~", with N denoting 27, takes the form

J

diag<e—z,81/2’e—z62/27 . ,G_Z’BN/Q,GZBI/Q,@zBQ/Q, . 761,81\7/2’
B_Z’BN“/Q, 6_51\1+2/2’ L ’e_lﬁZN/Q’ 615N+1/2’ 65N+2/2’ L. ’GZBQN/Q’
—ifBon—1_ 2 —Bon-1_ 2 —iBon—1/2 LiBon—1_ 2 _Bon—1_ 2 iByn—1/2
’e 2n N+1/ ’e 2n N+2/ R 76 2n /76 2n N+1/ ,6 2n N+2/ N ’e 2n /)

for some [y, - ,Pm-1 € R. By Example 3.109, it is a multi-controlled gate of type

Er) (Rz) whose target qubit is the (n — ~(j))-th qubit. Therefore, U;fb_lPJﬂ_l is the

product of multi-controlled gates in which the rotation gates involved are R, and R..

Let U be an n-qubit gate (or equivalently, 2" x 2" unitary matrix). Using (3.27),

on—1_1

U= (ﬂ U A R s

where U]7‘_1 is a block diagonal of 2 x 2 matrix for all j, and A; takes the form (3.28). From

the argument above, we know that U ;‘_IP;‘_I is the product of multi-controlled gates, while

each A;L’l is a multi-controlled gate of type F' ()

the quantum gate with matrix representation U using quantum circuits, it suffices to consider

(R,). Therefore, in order to implement
how to implement a multi-controlled gate in which the rotation gate involved is R, or R..

Theorem 3.122. FEach 2" x 2"l wnitary matriz can be expressed as the product of
multi-controlled rotation gates of type F{'(R,) and FJ'(R,), k=1,2,--- ,n+ 1.

3.9 Implementation of Multi-Controlled Rotation Gates

In this section we are concerned with the implementation of multi-controlled rotation gates of
type F'. 1 (R,) with unit vector @ = (0, ay, a.) using quantum circuits. The implementation
of multi-controlled gate of this type is the building block of the implementation of general
quantum gates. We note that multi-controlled rotation gate of type F}J'(R,), where 1 < k <
n, can be obtained by applying several swap operations on multi-controlled rotation gate of
type F)' 1 (Rq); thus arbitrary multi-controlled rotation gates can also be implemented even
though we only focus on the case of F)',,(R,).

Recall that Example 3.106 shows that the matrix representation of multi-controlled

114

rotation gates of type F' | (R,) takes the form

R = blkdiag(Ra(¢1), -~ , Ra(don)) = , (3.29)
Ra(¢2">

where for a given unit vector a = (ay, a,, a,) and angle ¢, the rotation matrix R,(¢) is given

by (2.8) or equivalently,
_ o .)
Ra<¢> - ICOS 5 + Z(CLZU(E + a/yo-y + CLzO'z) Sin E s

in which o, 0, and o, are the Pauli matrices

0 1 0 —i 1 0
O'IZX=|:1 O}’ Jy:Y:[Z. O}’ JZ:Z:[O _1}.

Such operator R,(¢) is called the rotation (of a qubit) about the three-dimensional vector

a with angle ¢ (on the Bloch sphere), and has the following properties:
1. Ry(¢) = R(0,1,0(—9) = R(o,—1,0)(¢) for all ¢ € R.
2. R.(¢) = R01)(—¢) = Roo,-1)(¢) for all p € R.
3. Ro(¢)! = Ra(—9) for all unit vectors a € R? and ¢ € R.
4. Rq(9) is unitary for all unit vectors a € R? and ¢ € R.
5. Ra(0)Ra(¢) = Ra(0 + ¢) for all unit vectors a € R and 6, ¢ € R.

6. XRo(¢)X = Ra(—0¢) for all unit vectorss a = (0,a,,a.) € R? and ¢ € R,

We use the following example of the idea of the implementation of a 4-qubit multi-

controlled rotation gate of type F}(R,) with unit vector a = (0, ay, a.).

Example 3.123. Let a = (0,a,,a,) be a unit vector in R3. In this example we consider

the multi-controlled 4-qubit gate given by

) ®y) = 17) @ (Ralay)ly)) i [k) =1[5),

where |k) = |k3) ® |ke) ® |k1) with k = (kskoks)2. In Example 3.106, we have shown that

the matrix representation of this quantum gate is

blkdiag(Rq(cv1), Ra(az), -, Ra(as)),

115

and we would like to express this multi-controlled gate as a sequence of implementable quan-
tum circuits (such as CNOT and some 1-qubit gate) on a 4-qubit system. In particular, we
would like to find C1,Cy,--- ,Cy € {CNOTM, CNOT 4, CNOT374} and 16 x 16 block diag-
onal matrix Ry, Ry, -+, Ry, of the form R; = blkdiag(Ra(6;), Ra(6;), - , Ra(6;)) (which is

A ~ B

8 copies of Rq(6;)
the matrix representation of I, ® I, ® I, ® R,(6;)) for some 6; € R so that

blkdiag(Ra(al), Ra<052), HRLI Ra(ag)) = CSR807R7 vt CQRQOlRl . (330)

Here we recall that CNOT; 4 denotes the controlled-not gate whose control qubit is the ¢-th
qubit while the target qubit is the 4-th qubit, and the matrix representation of CNOT 4,
CNOT;,4, CNOT3 4 are given by

CNOT174 = blkdlag(lg, 12, IQ, IQ, X, X, X, X) s
CNOT2’4 = blkdlag(lg, IQ, X, X, IQ, 12, X, X) s
CNOT374 = blkdlag(lg, X7 IQ, X, IQ, X, 12, X) .

Define ﬁk by

Ry, = CsCy - CuRpCrClyr - - Cs .

By the fact that C;C; = I and C;C) = CCj for all 1 < 7,k < 8, we find that

RgRr - Ry = (CsRsCy)(CsCr R C7Cx) (CyCrCs RgCsCrCs) - - (C - - - C1RyCy - - - C)
- (CSRS)(C7R7C7)<C706R60607) e (07 T C’1RlC1 T 08)
== (08R8)<C7R7)<06R606) e (Cb te CVlRlc(l e 08)

= (CsRs)(C7R7)(CoRe) -+ - (C11)(Cy -+ - C)

so that

08R807R7 T 01R1 = é8§7 s ﬁﬁ : (0102 tet Cg) .

116

Since XR4(¢)X = —R,(¢) for all a = (0,ay,a,), we find that for all ¢, ¢, -, ¢s € R,

CNOT; 4 - blkdiag(Ra(¢1), Ra(¢2), - , Ra(¢s)) - CNOTy 4

= blkdiag(Ra(¢1), Ra(d2), Ra(¢3), Ra($a), Ra(—05), Ra(—6), Ra(—07), Ra(—05)) ,
CNOT, - blkdiag(Ra(¢1), Ra(¢2), - , Ra(ds)) - CNOTy 4

= blkdiag(Ra(¢1), Ra(2), Ra(~03), Ra(~01), Ra(5), Ra(¢6), Ra(— 1), Ra(—05)) ,
CNOT;, - blkdiag(Ra(¢1), Ra(¢2), - , Ra(¢s)) - CNOT3 4

= blkdiag(Ra(¢1), Ra(—¢)’Ra(¢3) o(—01), Ra(¢5), Ra(—06), Ra(¢7), Ra(—05)) -

Therefore, }N%k must take the form
blkdiag(Ra(bk10k), Ra(bkabk), - - -, Ra(bisty)) ,

where by; = +1 and by; is determined by Cy, - - - , Cs. In fact, with r; denoting the symbol of
C; (see Remark 3.103 for symbols of CNOT gates) and .» denoting the Hadamard product
given by

[ubu%'” 7un} K [’0171}2,"‘ 7vn} = [Ul'Ul,UQUQ,"' 7unvn})

we have

b= [brr, Dra, - bas | =T x -o xrp x g (3.31)

Let M be the 8 x 8 Hadamard matrix; that is,

11 1 1 1 1 1
-1 1 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1

M =2 Hs =

1 -1 -1 -1 -1 1 1
-1 -1 1 -1 1 1 -1

— = = = e e e

and denote the k-th row of M by Sj;_;. The symbol for CNOTj3 4, CNOT34 and CNOT, 4
are then Sy, Sy and Sy, respectively. Note that the identity Rq(0)Ra(¢) = Ra(0+ ¢) implies

117

that

RgR; - Ry = blkdiag(Ra(bsi0s), Ra(bsabs), - -, Ra(bssbs))
- blkdiag(Ra(br167), Ra(br207), - -+ , Ra(brsby))
T blkdiag(Ra(bHel)? Ra(bu@l), T, Ra(b1891))
= blkdiag(Ra(b&Qs + br107 + - 4 b1161), Ra(bsals + bral7 4 - - - + b12b1), - - -,
Ra(bssbs + brsbs + - - - + bish1)) - (3.32)

The computation above motivates us to choose 1,79, -+ , 15 € {Sl, So, 54} (which is equiv-
alent of choosing C4,---,Cy € {CNOT1,4,CNOT274,CNOT374}) such that b, given by

b, = i .x -+ =17 = rg satisfying

1. bl = SO (lf S0, then 0102"'08 = 116 which 1mphes that 08R807R7"'01R1 =
RsRy--- Ry).

2. The collection {by, by, - -, bg} is linearly independent (so that it is a permutation of
{507 S17 T 757})‘
If we are able to find such r{,--- , rg, then we choose 04, - - - , 05 satisfying
bir by - bsy 01 aq
big bag -+ Dbsg Os asg

whose solvability is guaranteed by property 2 above (since the B matrix has full column
rank). Such 6;’s will then verify (3.30) becuase of (3.32) and (3.33), as well as the fact that
Cy - Cg = lgs.

Finally, let us talk about how to find ry, 79, -+ , 15 € {Sl, So, 54} satisfying the two prop-
erties above. First we establish some rules of multiplications of S}s (since b are Hadamard

product of some 7’s). Note that

Sl.*SQZS;g, Sl.*S4:S5, SQ.*S4:SG, Sl.*SQ.*S4:S7

118

so we have

[ones(1,8) = 5

S
S2

Sl Sk Sg
Sy

Sl K S4

SQ Sk 54

Sl K SQ K 54

Therefore, all rows of M can be generated by S, S, and S4 using the Hadamard product

. and we have
S;#S8;=S8,; Vije{l,2,4} and Sy .S .5 =5;. (3.34)
In order to compute S; .+ S; for general 0 <4, j < 7, we write
Sp = S{" xS xS VO<e<T

and use the formula
S; xS = SO 4 5O DA (3.35)

where @ is the addition in Zy, SY = S for k = 1,2,4, and we use the fact that S; .= S; = S
and S; .+ S; = 5; « 5, for §;,5; € {Sl, So, 54} to conclude the identity. We note that using
(3.34), by writing ¢ = (21(y)2 we have

Sy =500 w8 xSk
so that (3.35) becomes
S; xSy = §[0® g g i®i V0 <i,j <T7,i= (iairio)2,J = (J2jrjo)2 -
The use of (3.34) further shows that
Slizivio)s * Sliajijo)s = Skakiko)s Where g, jo € {0,1} and kg = ig @ jo .

By identifying Sz,e,0,), as (2, €1, ¢y), we find that the group ({So, S1,--- , 57}, .+) is isomor-
phic to the group (Zy x Zg x Zs,®), where @ on Zg x Zs x Zs is given by

(i2,71,%0) @ (J2, J2, Jo) = (12 @ j2, i1 DB J1, %0 D Jo) , ig, jo € 10,1} ;

119

that is, there exists a bijection ¢ : {Sp, -+, 597} = Zy x Zy x Zy given by ©(S(kakike)s) =
(/{32, 1{31, ko) such that

<:O(S(izilioh S S(j2j1j0)2) = @(S(i2i1io)2) S (P(S(jzj1jo)2) = (iQ @ Jo2, 11 D J1, %0 G‘)]O) .

Now, since r; are symbols of CNOT; 4, CNOT;4 or CNOT3y, 7 = S(u,y;2,), for some

z;,Y;, 2 € {0, 1} with the property that one and only one of z;,y;, 2; is 1. Since
(Th, Yy 26) D+ @ (28, Ys,28) = (Tx @ P8, Y D DYs, 2%t - D 28)

we find that ¢(by) and ¢(bg41), the correspondence of by and by in Zg x Zy X Zs, differs
by only one slot/bit (since every addition of new 7 to by,; corresponds to the addition
of (0,0,0), (0,1,0) or (1,0,0) to ¢(bgy1) in Zg x Zsy x Zsy). This motivates the idea of the
reflected binary code (also called Gray code) which is a scheme for listing all n-bit binary
numbers so that successive numbers differ in exactly one bit. A 3-qubit reflected Gray code
is given by [0,1,3,2,6,7,5,4]. We list these numbers in terms of binary representation in

the following table and one can see that adjacent numbers differ by one bit.

G=Gugo)2 [O 1T [326 7[5]4]0
s 000 T 11110
7 00 11 [1]0]0]0
7o 011 0 1] 1]0]0
From the table above, by, by, ---, bg correspond to (0,0,0), (0,0,1), ---, (1,0,0) in Zs X
Ly x Zy. How do we find r;?7 Note that by = 7y .» by q; thus
T = T .* bk+1 Sk bk+1 = bk K bk+1 V1 < j < 7, s = bg . (336)

Therefore, 71 corresponds to the element (0,0,0)® (0,0, 1) in Zy X Zy x Zs, 9 corresponds
to the element (0,0,1) @ (0,1,1) in Zy x Zs X Zg, and etc. This implies that 7 = S; and
ro = S, and so on. Note that the addition in fact indicates the bit where by and by,
differ (which is shown as boldface colored 0 or 1 in the table). Moreover, the position of
the different bit is in fact the position of the control qubit in the CNOT gate (for example,
the bit where by and by differs locates in the 3rd qubit; thus 7 = CNOTj4). Therefore, a
choice of C',Csy, - -+ ,Cg can be

{cNoT; 4, CNOT. 4, CNOT 4, CNOT, 4, CNOT; 4, CNOT, 4, CNOT,; 4, CNOT 4} .

120

We summarize the discussion in Example 3.123 and state the general procedure of the
decomposition of multi-controlled (n + 1)-qubit gate (with first n-qubit as control qubits)
as follows. Let N = 2",

1. Our goal is to write the matrix representation of a multi-controlled gate in the form
blkdiag(Ra(al), Ra(ozg), T, Ra(OéN)) = CNRNCN_lRN_l e CQRQClRl N (337)

where a = (0, a,,a,) is a unit vector, C, € {CNOT} 5,41, -+ ,CNOT, 41} and Ry =
blkdiag(Ra(6), -, Ra(0r)) for all 1 < k < N.

2. Using the property that C; = C; ! and C;, C; commute, the right-hand side of (3.37)

can be rewritten as
COnRnCn-1Ry—1+- CoaRyCiRy = RyRy_1 -+ R, - (C1Cy---Cn),
where Ry, = (C4Chs1 -+ On) Ri(CnCn_y -+ C).
3. The effect of C},---Cy on R}, leads to the result
Ry, = blkdiag(Ra(br16k), Ra(brobh), - - » Ra(binbr)) ,

where by, = [bg1, bk, - - - , bpn] are Hadamard product of the symbols of Cy, -+, Cy,

respectively, or to be more precise,
b = [ber,bia, - Jben | =T s TN 2Ty (3.38)
where 7; are symbol of C; introduced in Remark 3.103.

4. We choose 7y, - - - , rn properly from {SQk ‘ 0<k<n-— 1}, where Sy is the (2% +1)-th
row of M = v/2"H,,, so that the corresponding by satisfies

(a) by = ones(1, N);
(b) the collection {by, by, - - - , by} is linearly independent so that it is a permutation
of the rows of M.

Once we have these by’s, we then solve

biy Doy - by 91 aq
bia baa -+ bno 0o Qo

, = | . (3.33)
bin ban -+ byn Os Qg

to obtain 6, - - -, 0.

121

5. Let {x1,xq, - ,xn} be a reflected binary code (with z; = 0) for the list of numbers

{0,1,--- ,N—1},and f: {1,--- ,N} > {1,---n} be defined by
f(j) is the location where the bit expression of z; and x4, differ (zn41 = 0).
Then a choice of Cy,C5,--- ,Cy and by, by, - -+ , by are given by

Cj; = CNOT(j) n+1 b; = the binary expression of x;.

Remark 3.124. A way to obtain a reflected binary code for the numbers {0,1,2,--- 2" —1}
is given as follows: B B 4pE K 0 B4e > 23 B A 2 R EE

1. - %, 8k +Fhiz i
2. R H R L EALY-BL 1l agmiFara;
3. EHE - AR o H o I T BAL R -

Example 3.125. A Gray code for the case n = 3 is given by
000 — 001 — 011 —- 010 — 110 — 111 — 101 — 100.

e Algorithm of the decomposition of multi-controlled (n + 1)-qubit gates

Suppose that we are given matrix
R= blkdiag(Ra(al), e ,Ra(aN))
for some unit vector a = (0, a,, a,), where N = 2".

1. Let {x1,xq, - ,xn}, where x; = 0, be a reflected binary code (Gray code) for the list
of numbers {0,1,--- , N — 1}. Define xy4; =0and f: {1,--- ,N} - {1,---n} by

f(j) is the location where the bit expression of x; and z;1; differ (zy41 =0)
which can be implemented in matlab® by
f(j) = find(double(xor(flip(de2bi(x;, n)), flip(de2bi(x;11,n)))) ==1).

Set Cj = CNOTf(j),n+1 for 1 <] < N.

122

2. Define a 2" x 2" matrix M = [m;;] by
mi; = (_1)(171)0%

where the exponent (i — 1) e (x;) is the bitwise dot product (defined in (3.8)) of (i — 1)
and z; (which can be implemented in matlab® by de2bi(i — 1,n) de2bi(x;,n)"). Solve

th aq
Y éz _ Qy
49]\[N

3. Define Rk = blkdiag(Ra(ek), st 7Ra<9k)) Then R = CNRNCNflRNfl st ClRl.

- ~ - ~

N copies of Rq(0k)

We note that in matlab® R;, can be formed by

Ry, = kron(eye(N), R,(6k)) .

Chapter 4

Simon’s Algorithm

Simon’s algorithm was the first quantum algorithm to show an exponential speed-up versus
the best classical algorithm in solving a specific problem. This inspired the quantum algo-
rithms based on the quantum Fourier transform, which is used in the most famous quantum

algorithm: Shor’s factoring algorithm.

4.1 Simon’s Problem

Let N = 2" and identify the set {0,--- , N — 1} with {0,1}". Let j @ s be the n-bit string
obtained by bitwise adding the n-bit strings j and s mod 2; that is,

JDs = ((jl @s1)(j2@s2) (Jn @ 5n)>2 if j=(jijz - jn)2 and s = (5182 5,)2.
Simon’s problem:

e Formulation 1: For N = 2" we are given z = (¢, ,zn_1), with z; € {0,1}", with
the property that there is some unknown nonzero s € {0, 1}" such that x; = z; if and

only if (1 =j ori=j®s). Find s.

e Formulation 2: If f: {0,1}" — {0, 1}" is either an one-to-one or a two-to-one function
satisfying the property that there exists s € {0, 1}" such that f(i) = f(j) if and only
if 1 =7 or 1 =7@®s. Determine the class to which f belongs to.

Note that the input here are slightly different from before: the input x = {x¢, -+ ,xy_1}
now has variables x; that themselves are n-bit strings, and one query gives such a string

completely [i0") — |ix;).

123

124

4.2 The Quantum Algorithm

Simon’s algorithm starts out very similar to Deutsch-Jozsa: start in a state of 2" zero qubits

|0">|0™) and apply Hadamard transforms to the first n qubits, giving

%27 S [plon).

i€{0,1}"

At this point, the second n-qubit register still holds only zeroes. A query turns this into

= 2 Dl

ie{0,1}"

Now the algorithm measures the second n-qubit register in the computational basis; this
measurement is actually not necessary, but it facilitates analysis. The measurement outcome
will be some value x; and the first register will collapse to the superposition of the two indices

having that x;-value:
1
V2
We will now ignore the second register and apply Hadamard transforms to the first n qubits.
Using Equation (2.9) and the fact that (i@ s)ej = (iej) @ (sej) (which is a direct conse-
quence of (i @ sg) - jr = (ix - Jx) D sk - Jx) for all iy, sk, jr € {0,1}), we can write the resulting

(1D + i@ s))|xi).

state as

Z (=1)"*75) + Z (—1)®)*d)5
V2 elonye jeio1y

S % U).

jefo,13n

Note that |j) has nonzero amplitude if sej = 0 mod 2. Measuring the state gives a
uniformly random element from the set {j|sej = 0 mod 2}. Accordingly, we get a linear
equation that gives information about s. We repeat this algorithm until we have obtained
n — 1 independent linear equations involving s. The solutions to these equations will be
0" and the correct s, which we can compute efficiently by a classical algorithm (Gaussian
elimination modulo 2). This can be done by means of a classical circuit of size roughly
O(n?).

Note that if the j’s you have generated at some point span a space of size 2¥, for some

k < n — 1, then the probability that your next run of the algorithm produces a j that is

125

linearly independent of the earlier ones, is (2" —2%)/2" > 1/2. Hence an expected number of

O(n) runs of the algorithm suffices to find n —1 linearly independent j’s. Simon’s algorithm

thus finds s using an expected number of O(n) x;-queries and polynomially many other

operations.

o7y =[e

=

@y (Q for “query”)
|0") —=—H 0"

$i:

A

He"

A

Figure 4.1: Quantum circuit for Simon’s algorithm

Example 4.1. Let us see the example of Simon’s algorithm for periodic function of 2 qubits

given by
fz1,22) = (1 ® 22,21 B X2)

Vay,xe € {0,1}.

The period s = (11)5, and the quantum circuit to solve the problem is:

0) — H H A
0) — H H A4
10> ® ® A
10) D O— A~

Figure 4.2: Quantum circuit for Simon’s algorithm in this example

To check the four CNOT operations indeed provide the oracle ()¢, we note that by

writing |z) = |z129) and |y) = |y1)|y2), we have

CNOT274CNOT273CNOT174CNOT173 |a:>\y>

= CNOT2’4CNOT273CNOT1’4CNOT173 |$1>‘$2>’y1>|y2>

= CNOT;4CNOT;3CNOT, 4|z1)|x2)|T1 @ Y1)|Y2)
= CNOT,sCNOTy 3|71)|2)|71 D y1)|21 @ Y2)
= CNOTy 4|x1)|T2)|T1 B T2 ® Y1)|1 D Y2
= |z)lz)|lz1 @ 22 @ y1)|z1 @ 22 B o) = [2)|y @ f(2)) = Q¢lx)|y) .

126

4.3 Classical Algorithms for Simon’s Problem

4.3.1 Upper bound

Let us first sketch a classical randomized algorithm that solves Simon’s problem using
O(y/2") queries, based on the so-called “birthday paradox”. Our algorithm will make T'
randomly chosen distinct queries 7y, - - - , 7, for some T to be determined later. If there is a
collision among those queries (that is, x;, = x;, for some k #), then we are done, because
then we know i, = i, mod s, equivalently s = 7, @ i,. How large should T be such that we
are likely to see a collision in case s # 07 (there will not be any collisions if s = 0".) There

indices are chosen randomly, the probability for a fixed pair to form a collision is 1/(2" —1).

~ T?/2 pairs in our sequence that could be a collision, and since the

Hence by linearity of expectation, the expected number of collisions in our sequence will
be roughly 72/2"1. If we choose T = /271, we expect to have roughly 1 collision in our
sequence, which is good enough to find s. Of course, an expected value of 1 collision does
not mean that we will have at least one collision with high probability, but a slightly more

involved calculation shows the latter statement as well.

4.3.2 Lower bound

Simon proved that any classical randomized algorithm that finds s with high probabil-
ity needs to make €(1/27) queries, so the above classical algorithm is essentially optimal.
This was the first proven exponential separation between quantum algorithms and classi-
cal bounded-error algorithms (let us stress again that this does not prove an exponential
separation in the usual circuit model, because we are counting queries rather than ordinary
operations here). Simon’s algorithm inspired Shor to his factoring algorithm.

We will prove the classical lower bound for a decision version of Simon’s problem:
Given: input z = (z¢,- -+ ,xy_1), where N = 2" and z; € {0, 1}".
Promise: there exists s € {0, 1}" such that z; = z; if and only if (i = j or i = j @ s).
Task: decide whether s = 0.

Consider the input distribution p that is defined as follows. With probability 1/2, x
is a uniformly random permutation of {0,1}"; this corresponds to the case s = 0". With

probability 1/2, we pick a nonzero string s at random, and for each pair (i,7 @® s), we pick

127

a unique value for z; = z;qs at random. If there exists a randomized T-query algorithm
that achieves success probability > 2/3 under this input distribution g, then there also is
deterministic T-query algorithm that achieves success probability > 2/3 under p (because
the behavior of the randomized algorithm is an average over a number of deterministic
algorithms). Now consider a deterministic algorithm with error < 1/3 under p, that makes
T queries to . We want to show that 7' = Q(+/2").

First consider the case s = 0". We can assume the algorithm never queries the same
point twice. Then the T outcomes of the queries are T distinct n-bit strings, and each
sequence of T strings is equally likely. Now consider the case s # 0™. Suppose the algorithm
queries the indices iy, -+ ,i7 (this sequence depends on x) and gets outputs z;,,- -, ;..
Call a sequence of queries iy, - - - ,ip good if it shows a collision (that is, z;, = z;, for some
k # (), and bad otherwise. If the sequence of queries of the algorithm is good, then we can
find s, since i, @i, = s. On the other hand, if the sequence is bad, then each sequence of T’
distinct outcomes is equally likely - just as in the s = 0™ case! We will now show that the
probability of the bad case is very close to 1 for small 7.

If i1, ,ig_1 is bad, then we have excluded at most C5~* possible values of s (namely
all values i; @ i; for all distinct j, j' € [k — 1]), and all other values of s are equally likely.
The probability that the next query i, makes the sequence good, is the probability that
z;, = x;, for some j < k, equivalently, that the set S = {ix @i;|j < k} happens to contain
the string s. However, S has only k& — 1 members, while there are 2" — 1 — C5~! equally
likely remaining possibilities for s. This means that the probability that the sequence is still

bad after query iy is made, is very close to 1. In formulas:

T
Prliy, -+ ,ir is bad] = HPr[z’l, -+ i is bad|iy, - - - ik is bad]
k=2

T T
k-1 k-1
- —a) 2 Yo

k=2

Here we used the fact that (1 —a)(1 —b) >1— (a+0) if a,b > 0.
T _
Note that 2" — 1 — C¥' ~ 2" as long as k « /27, and Y (k —1) = T(T21) ~
k=2

T?/2. Hence we can approximate the last term in the formula by 1 — T?/2" if k «
V2. Accordingly, if T" « 4/2" then with probability nearly 1 (probability taken over the
distribution u) the algorithm’s sequence of queries is bad. If it gets a bad sequence, it cannot

“see” the difference between the s = 0" case and the s # 0" case, since both cases result in

128

a uniformly random sequence of T" distinct n-bit strings as answers to the T' queries. This
shows that T has to be /2" in order to enable the algorithm to get a good sequence of
queries with high probability.

Chapter 5

The Fourier Transform

5.1 The Classical Discrete Fourier Transform

The Fourier transform occurs in many different versions throughout classical computing, in
areas ranging from signal-processing to data compression to complexity theory. For our
purposes, the Fourier transform is going to be an NV x N unitary matrix, all of whose entries

have the same magnitude. For N = 2, it’s just our familiar Hadamard transform:

I 11 1
-l 4

Doing something similar in 3 dimensions is impossible with real numbers: we cannot give

three orthogonal vectors in {1, —1}3. However, using complex numbers allows us to define

. 2mi :
the Fourier transform for any N. Let wy = exp (%) be an N-th root of unity. The rows

of the matrix will be indexed by j € {0, -+, N—1} and the columns by %k € {0,--- , N—1}.
Define the (7, k)-entry (so we use the (0,0)-entry to denote the usual (1, 1)-entry) of the

matrix Fly by Vlﬁw%g:
1 1 1 1 i
X 1 wy w3 . C;(J]\}fv—ll)
Fy = —= 1wy Wi Wy
1w w]2V(N—1) wJ(VN—l)(N—l) |

130

Note that Fy is a unitary matrix, since each column has norm 1, and any pair of columns

(say those indexed by k and k') is orthogonal:

N—

NZ:LT L Jk’ 2 (k' —k) 1 itk =k,
= VN WN \/ﬁ 0 otherwise.

Since Fyy is unitary and symmetric, the inverse Fiy' = F¥ only differs from Fy by having
minus signs in the exponent of the entries. For a vector v € RY, the vector ¥ = Fyv is

called the discrete Fourier transform (DFT) of v. Doing the matrix-vector multiplication,

N
ik

its entries are given by v; = Wy Vg

1
\/Nk: 1
5.2 The Fast Fourier Transform

The naive way of computing the Fourier transform © = Fyv of v € RY just does the matrix-
vector multiplication to compute all the entries of v. This would take O(N) steps (additions
and multiplications) per entry, and O(N?) steps to compute the whole vector . However,
there is a more efficient way of computing v. This algorithm is called the Fast Fourier
Transform (FFT, due to Cooley and Tukey in 1965), and takes only O(N log, N) steps.
This difference between the quadratic N2 steps and the near-linear N log, N is tremendously
important in practice when N is large, and is the main reason that Fourier transforms are
so widely used.

We will assume N = 2" which is usually fine because we can add zeroes to our vector
to make its dimension a power of 2 (but similar FFTs can be given also directly for most N

that are not a power of 2). The key to the FFT is to rewrite the entries of v as follows:

%NZ: Wik, = <Zka+Zwva>

k even k odd

_L< 1 S wltfu + WV,)
I~ o N/2 WN /2 :

\/5 N/2 k even k odd

Note that we have rewritten the entries of the N-dimensional discrete Fourier transform

~ . N

v in terms of two 5—d1mensmnal discrete Fourier transforms, one of the even-numbered

entries of v, and one of the odd-numbered entries of v. This suggests a recursive procedure

DA . _— N .. .
for computing v: first separately compute the Fourier transform veye, of the 5—d1men310nal

131

. . . — N
vector of even-numbered entries of v and the discrete Fourier transform v.,qq of the 5"

dimensional vector of odd-numbered entries of v, and then compute the N entries using

N

~ 1 —

0 = J5[Ea) +eb(@ia)] vosj<5 -1,
i o o N
Uity TR [(Beven); —wn(oaa)s] VO <j< 5 b

The computation time T'(IV) it takes to implement Fy this way can be written recursively as
N N
T(N) = 2T(5) + 2N, because we need to compute two E—dlmensmnal Fourier transforms

and do 2N additional operations (additions and multiplications) to compute v. This works
out to time T(N) = O(Nlog, N), as promised. Similarly, we have an equally efficient

: : . . _ . 1
algorithm for the inverse discrete Fourier transform Fy' = Fj, whose entries are ——w,’

NN
5.3 Application: Multiplying Two Polynomials

Suppose we are given two real-valued polynomials p and ¢, each of degree at most d:

d d
p(z) = Z a;z’ and q(x) = 2 bra” .
j=0 k=0
We would like to compute the product of these two polynomials
d ‘ d 2 4
pwate) = (Yag?) (Y oat) =3 (Yahe) ot
=0 k=0 (=0 j=0

Ce

Clearly, each coefficient ¢, by itself takes (2¢ + 1) steps (additions and multiplications) to
compute, which suggests an algorithm for computing the coefficients of p-q that takes O(d?)
steps. However, using the fast Fourier transform we can do this in O(dlog, d) steps, as
follows.

The convolution of two vectors a,b € RV is a vector a % b € RY whose /-th entry is
defined by
1

N-1
(a % b) = TN Z a;jb(e—j) mod N -
=0

Let us set N = 2d + 1 (the number of nonzero coefficients of p - ¢) and make the (d + 1)-

dimensional vectors of coefficients a and b N-dimensional by adding d zeroes. Then the

132

coefficients of the polynomial p - ¢ are proportional to the entries of the convolution: ¢, =
VN (a % b),. Tt is easy to show that the Fourier coefficients of the convolution of a and b
are the products of the Fourier coefficients of a and b: for every ¢ € {0, ..., N—1} we have
(a % b)y = (@.%b)s

_ 1 .

-1 N—

1
(a%b)=— > w(a* b=~)]
N k=0 N k=0

N—1
Ok

Z Wy ajb(k—j) mod N

j=0

= (\/LN WN%) (Z wNa]bk mod N> = (a Sk /b\)fa

where we have used the periodicity to conclude that

N-1

N—
2 k: —j) mod N — 2 wNa]bk mod N -
k=0 k=0

This immediately suggests an algorithm for computing the vector of coefficients ¢,: apply
the FFT to a and b to get a and g, multiply those two vectors entrywise to get a . g, apply
the inverse FFT to get a % b, and finally multiply a % b with v/N to get the vector ¢ of the
coefficients of p - ¢. Since the FFTs and their inverse take O(N log, N) steps, and pointwise
multiplication of two N-dimensional vectors takes O(N) steps, this whole algorithm takes
O(N log, N) = O(dlog, d) steps.

Note that if two numbers ay---ajag and by - - - b1bg are given in decimal notation, then
we can interpret the digits as coefficients of polynomials p and ¢, respectively, and the
two numbers will be p(10) and ¢(10). Their product is the evaluation of the product-
polynomial p - ¢ at the point x = 10. This suggests that we can use the above procedure
(for fast multiplication of polynomials) to multiply two numbers in O(dlog, d) steps, which
would be a lot faster than the standard O(d?) algorithm for multiplication that one learns
in primary school. However, in this case we have to be careful since the steps of the
above algorithm are themselves multiplications between numbers, which we cannot count
at unit cost anymore if our goal is to implement a multiplication between numbers! Still, it

turns out that implementing this idea carefully allows one to multiply two d-digit numbers

133

in O(dlog, dlog,log, d) elementary operations. This is known as the Schénhage-Strassen
algorithm. We will skip the details.

5.4 The Quantum Fourier Transform

Since Fy is an N x N unitary matrix, we can interpret it as a quantum operation, mapping an
N-dimensional vector of amplitudes to another N-dimensional vector of amplitudes. This
is called the quantum Fourier transform (QFT). In case N = 2" (which is the only case
we will care about), this will be an n-qubit unitary. Notice carefully that this quantum
operation does something different from the classical Fourier transform: in the classical case
we are given a vector v, written on a piece of paper so to say, and we compute the vector
v = Fyv, and also write the result on a piece of paper. In the quantum case, we are working
on quantum states; these are vectors of amplitudes, but we do NOT have those written
down anywhere — they only exist as the amplitudes in a superposition. We will see below
that the QFT can be implemented by a quantum circuit using O(n?) elementary gates.
This is exponentially faster than even the FFT (which takes O(N log, N) = O(2"n) steps),
but it achieves something different: computing the QFT will NOT give us the entries of
the Fourier transform written down on a piece of paper, but only as the amplitudes of the

resulting state.

Definition 5.1. The N-dimnesional quantum Fourier transform Fy, where N = 2", is a

linear map on the n-qubit space {|0),|1),--,|N — 1)} satisfying that

1 N—-1 ' .
Fwlk) = —= DMkl VIR =lhky k) = [k) @ ® [ka),
j=0

. 2mi
where again wy = exp (%)

. 2mijk . & 2nkg .
Since exp (7;#) = exp <z > 7;7‘”), using (3.17) we find that
i=1
N- n

1 2mijk | | 1
Enlky = —= 3, e 1) = @ 5 (00 + ¢
=0

/=1

—_

2mik
ol

1>) (5.1)

Using the convection 0.byby---b,, = > 0,27 for b = biby---b,, € {0,1}™ (for example,
=1

134

1 1 1 .
0.101:1-§+0-1+1-§:§),bythefactthat e?™ =1 we have

exp (27;2/4)) ~exp (27”i o 2m j 12) = exp (271'2 Z k;2m~ J £>

=1 j=n—_(+1

.

¢
= exp <2m D bnrgm?) = exp (2710 kp—r11kn—r12- - k)

m=1

so that (5.1) implies that

~ 1 2780 Ky — 41 -k
FN|k>:§>§1\—ﬁ<|O>+e g1k |1>). (5.2)

In the following, we will describe the efficient circuit for the n-qubit QFT. The elementary

gates we will allow ourselves are Hadamards and controlled-R; gates, where

1 0
R, = |: 0 62771'/25 :| :

1 0 10
NotethatRl—Z—{O _1},R2—{0 Z.},and

R,|k) = €25

g> VkE{O,l}.

2mi/2* i close to 1 and hence the R,-gate is close to the identity-gate I. We

For large s, e
could implement R,-gates using Hadamards and controlled-R gates for s = 1,2, 3, but for

simplicity we will just treat each Rs as an elementary gate.

Example 5.2. In this example illustrate how to construct the quantum circuit of Fg. Using
(5.2),

1 2mi0.k 1 2mi0.kok 1 2mi0. k1 ok
75(|0>+€ 3\1>)®\—@(\0>+6 ”\1>)®7§(|O>+6 L)

1. To prepare the first qubit of the desired state Fg|kikoks), just apply a Hadamard to

Fylkikoks) =

|k3) since
1 kslq\) _ L 2mi0.ks
Hjks) = = (100 + (~1)411) = =(10)+ (1))

2. To prepare the second qubit of the desired state, we first apply a Hadamard to |ks) to

obtain \2 (]0)+¢e?™0+2|15), and then conditioned on k3 (before we apply the Hadamard

to |ks)) apply Ra: by applying Ry it multiplies |1) with a phase e
the correct qubit — (]O> + e2mi0kaks |13

2mi0.0ks - producing

135

3. To prepare the third qubit of the desired state, we apply a Hadamard to |k), apply

Ry conditioned on ky and R3 conditioned k3. This produces the correct qubit |0)+

1
7l

627Ti0.k21k’2k:3 | 1>) .

Note that the order of the output is wrong: the first qubit should be the third and vice
versa. So the final step is just to swap qubits 1 and 3. Therefore, Fy can be achieved by the

following quantum circuit:

|k1) —m H — R2 4 Rs

|k2) H— R

|ks) H

Figure 5.1: QFT for 3-qubits

The general case works analogously: starting with £ = 1, we apply a Hadamard to |k,)
and then “rotate in” the additional phases required, conditioned on the values of the later
bits keiq, -, kn.

¥> %)
|A‘.E> N _|R”_P R”_{’_l }_ |U> £ lca29':'-." l['l.f\-{...ﬁ'“ | 1
V2
|ket1) . e |Kes1)
|ker2) e LAYy
|- o |Fn—1)
e o k)

Figure 5.2: The ¢-th block of QFT for n-qubits, where |1) is a (¢ — 1) qubit quantum state

Some swap gates at the end then put the qubits in the right order, and we have the full

quantum circuit of QFT for n-qubits below:

136

k1>..._Rn1_¢Rn|
|k2) @_ R, o—R, |— -

k1) l
) . @_

Figure 5.3: The quantum circuit of QFT for n-qubits (finally one should apply an order
reverse operator)

Since the circuit involves n qubits, and at most n gates are applied to each qubit, the
overall circuit uses at most n? gates. In fact, many of those gates are phase gates R,
with s » logn, which are very close to the identity and hence do not do much anyway.
We can actually omit those from the circuit, keeping only O(logn) gates per qubit and
O(nlogn) gates overall. Intuitively, the overall error caused by these omissions will be
small (a homework exercise asks you to make this precise). Finally, note that by inverting
the circuit (that is, reversing the order of the gates and taking the adjoint U* of each gate U)

we obtain an equally efficient circuit for the inverse quantum Fourier transform Fy' = F7.

5.5 Application: phase estimation

Suppose we can apply a unitary U and we are given an eigenvector [¢)) of U corresponding
to an unknown eigenvalue A (that is, U|¢)) = A|¢)) for some unknown A € C), and we would
like to compute or at least approximate the \. Since U is unitary, A must have magnitude 1,
so we can write it as A = €™ for some real number ¢ € [0, 1); the only thing that matters
is this phase ¢. Suppose for simplicity that we know that ¢ = 0.¢1¢5 - - - ¢,, can be written

exactly with n bits of precision. Then here’s the algorithm for phase estimation:

1. Start with [0™)[)).

N-1

2. For N = 2", apply Fy to the first n qubits to get \/1N i |7)|Y) (in fact, H*®I would
7=0

have the same effect).

137

3. Apply the map [7)[1)) — [j>U?|¢p). In other words, apply U to the second register for

a number of times given by the first register.
4. Apply the inverse Fourier transform FJ§1 to the first n qubits and measure the result.

Note that after step 3, the first n qubits are in state

5

N—-1
2midi |
> e,
N &

hence the inverse quantum Fourier transform is going to give us [2"¢) = |¢y - - - ¢, with
probability 1. In case ¢ cannot be written exactly with n bits of precision, one can show
that this procedure still (with high probability) spits out a good n-bit approximation to ¢.

We'll omit the calculation.

Definition 5.3. Let U € U(2™) be an 2™ x 2™ unitary matrix and let |¢)) be one of
the eigenvector of U with corresponding eigenvalue €. The Quantum Phase Estimation
algorithm, abbreviated QPE, takes the inputs the m-qubit quantum gate for U and the
state |0")]¢) and returns the state |f)|1)), where 8 denotes a binary approximation to 2"6
and the n subscript denotes it has been truncated to n digits. In notation, with [-] denoting

the Gauss/floor function,

QPE(U, |0%)|¢)) = |0lvy, 6= [2"4].

We will use |6),, to denote 16) if 6 = [270].

Chapter 6

Shor’s Factoring Algorithm

Suppose that N is the product of two unknown prime numbers p, q. Then a classical way of
factoring N is to run a routine check to see which natural number not greater than /N is
a factor of V. The worse case scenario is to try this division v/N times in order to find the
correct factors. The current encryption system is designed based on the fact that “it is much
easier to compute the product of two prime numbers than to factor a number which is the
product of two prime numbers is difficult”. In the following, we quickly review the current
encryption system and the mathematics behind it, and study the most famous quantum

algorithm to factor large numbers, the Shor algorithm.

6.1 RSA Encryption

RSA is an asymmetric encryption (2% 43" 4c %) technique that uses two different keys
as public and private keys to perform the encryption and decryption. The public key is
represented by the integers n and e, and the private key by the integer d. A basic principle
behind RSA is to find three very large positive integers e, d, and n, such that with modular

exponentiation all messages m € N with 0 < m < n satisfies
(m)* = m (mod n)

and that knowing e and n, or even m, it can be extremely difficult to find d.

6.1.1 Mathematical foundation

Definition 6.1 (Greatest common divisor). Let a and b be non-zero integers. We say the

integer d is the greatest common divisor (gcd) of a and b, and write d = ged(a, b), if

138

139

1. d is a common divisor of a¢ and b.

2. every common divisor ¢ of a and b is not greater than d.

Theorem 6.2. Let a and b be positive integers with a < b. Suppose that b = aqg + 1,
a="7riq1+1r2, Tjm1 =1iq + 141 for 2 < j <k, where 0 =1 <1 <o <1y <71 <a
and g; € N for all 0 < j < k.

1. ged(a,b) = 1, the last non-zero remainder in the list.

2. If {s;};= and {t;},— are defined by

s; = 0 if =0, and t; = 1 if j=0,
Sj_9 —qj—15j-1 ifj =1, tjio —qj—tj—1 ifj =1,

at; +bs; = r; Vi<j<k.

Proof. Let a and b be positive integers with a < b. By the Division Algorithm, there exists
positive integer ¢; and non-negative integer r; such that b = aqy +r; and 0 < r; < a. If
r1 = 0, the lists terminate; otherwise, for 0 < r; < a, there exists positive integer ¢; and
non-negative integer ro such that a = r1g;+r, and 0 < ry < ry. If ro = 0, the lists terminate;
otherwise, for 0 < ry < 71, there exists positive integer ¢» and non-negative integer r3 such
that 11 = roge +r3 and 0 < rg < ro.

Continuing in this fashion, we obtain a strictly decreasing sequence of non-negative
integers ry,79,73,---. This lists must end, so there is an integer k£ such that ry,; = 0.

Therefore, with r_; and ry denoting b and a respectively, we have
r_1=T9>T1>T9 > >T > Ty =0,
Tj_lzrjqj—i—er forallOé]ék:

1. We now show that r, = d = ged(a, b).

(a) The remainder ry divides rx_; since 1,_1 = riqy. Therefore, by the fact that
rj—1 =1jq; + 141 for all 0 < j <k, we find that rj, divides ;4 for all 0 < j < k;

thus r, divides a and b.

(b) On the other hand, d divides 7, since r; = b — aqo. Therefore, by the fact that
rjt1 = 1j-1 — 1;q; for all 0 < j < k, we find that d divides r for all 0 < j < k.

140

By (a), r is a common divisor of a and b. By (b), the greatest common divisor of a

and b must divide 7; thus we conclude that ry = ged(a, b).

2. To see that for all 1 < j <k,
atj—l—bsj =T, (61)

we note that

(a) (6.1) holds for the case k =1 since (s1,t1) = (1, —qo) and b = aqo + 1.
(b) (6.1) holds for the case k = 2 since (sq,t2) = (—q1, 1 + qoq1) and

aty +bsy = a(l + qoq1) — by = a — qi(b—aqy) =ro — qr1 =712
(¢) Suppose that (6.1) holds for k = ¢, — 1, ¢ > 2. Then

at4+1 + ng+1 = a(tg,1 — Qgtg) + b(Sg,1 — ngg) = atg,1 + sz,1 — Qg(alfg + ng)

=Te—1— qeTe = Te41 -
By induction, we conclude that (6.1) holds for 1 < j < k. o

Remark 6.3. Let a,b € N with a < b. The algorithm to compute ged(a,b) given in part 1
of Theorem 6.2 is caleed Euclid’s Algorithm (#&i& 4p “,f :%), and the algorithm to compute

x,y € 7 so that ax + by = ged(a,b) given in part 2 of Theorem 6.2 is called Extended
Euclid’s Algorithm.

Example 6.4. We compute ged(32,12) using Euclid’s algorithm as follows:
32=12x2+8, 12=8x1+4, 8=4x240.
Therefore, 4 = ged(12,32). Moreover, by working backward,
4=12-8x1=12—-(32-12x2)x1=12x3+32x (—1).

One can also obtain the “coefficients” 3 and —1 using Extended Euclid’s Algorithm:

J1 T g S|t
-1 32 1 0
012|121 0 1
1] 8|1 1 | -2
21412]-1] 3

141

Theorem 6.5. Let a and b be non-zero integers. The ged of a and b is the smallest positive

linear combination of a and b; that is,
ged(a, b) = min{am—l—bn‘am—i—bn >0,m,ne Z}.

Proof. Let d = am + bn be the smallest positive linear combination of a and b. We show

that d satisfies (1) and (2) in the definition of the greatest common divisor.

1. First we show that d divides a. By the Division Algorithm, there exist integers g
and r such that a = dg + r, where 0 < r < d. Then

r=a—dq=a— (am+bn)g=a(l—m)+b(—nqg);

thus r is a linear combination of a and b. Since 0 < r < d and d is the smallest
positive linear combination, we must have r = 0. Therefore, a = dq; thus d divides a.
Similarly, d divides b (replacing a by b in the argument above); thus d is a common

divisor of a and b.

2. Next we show that all common divisors of ¢ and b is not greater than d.
Let ¢ be a common divisor of a and b. Then ¢ divides d since d = am + bn. Therefore,
c <d.

By (1) and (2), we find that d = ged(a, b). o
Definition 6.6 (Euler function). Let n € N. The function ¢ : N — N defined by
¢(n) =#{keN|1 <k <nandged(k,n) =1}

is called the Euler (phi) function. In other words, the Euler function counts the positive

integers up to a given integer n that are coprime to n.

Proposition 6.7. For each n € N,
1
w(n) :nl—[(1—]—) :

,
In particular, by writing n = |] p?j = p]flp§2 --pFr . where py,--- ,p, are distinct prime
j=1

numbers and ki, -+ , k. € N,
,

o) =[]ry " (0;—1).

j=1

142

Corollary 6.8. Let m,n € N be such that ged(m,n) = 1. Then o(mn) = o(m)e(n).

Definition 6.9. Given a € Z and n € N, a modulo n (abbreviated as a mod n) is the
remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
In other words, @ mod n outputs r if @ = gn + r for some ¢ € Z and r € {0,1,--- ,n — 1}.
For a,b € Z, the notation a = b (mod n) denotes the fact that n|(a —b); that is, there exists

m € Z such that a — b = mn.
We note that by the definition, a = b (mod n) if and only if a — b= 0 (mod n).
Definition 6.10. The addition @ on Z,, is defined by
c=a®b if and only if (a + b) mod n outputs ¢,
and the multiplication ® on Z,, is defined by
c=a®b if and only if (a - b) mod n outputs c,
where 4+ and - are the usual addition and multiplication on Z.
Proposition 6.11. (Z,,®) is a group; that is,
1. Z,, is closed under addition ®;
2. there exists an additive identity 0 (that is, a®0 = a for all a € Z,), and

3. every element in Z, has an additive inverse (that is, for each a € Z,, there exists b € Z,

such that a®b = 0).

Proposition 6.12. Let n > 2 be an integer, and a,b € Z satisfy a = b (mod n). Then
ged(a,n) =1 if and only if ged(b,n) = 1.

Proof. Tt suffices to shows that if ged(a,n) # 1, then ged(b,n) # 1.
Suppose that ged(a,n) = p > 1. Then a = pg; and n = pgy for some ¢y, gz € Z. Since
a = b (mod n), there exists m € Z such that a — b = mn. Therefore, b = a — mn =

pq1 — pgam = p(q1 — gom) which shows that ged(b,n) = p. D

Proposition 6.12 shows that if a € Z satisfies ged(a,n) = 1, then (e mod n) is coprime

to n.

143

Proposition 6.13. Let a,b,c,d € Z and n € N be such that a = ¢ (mod n) and b= d (mod
n). Then a-b=c-d (modn).

Proposition 6.14 (Cancellation law in Z,). Let a,n € N be such that ged(a,n) = 1. If

a-b=a-c (modn), then b= c (modn).

Theorem 6.15. The integers coprime to n from the set {0,1,--- ;n—1} of n non-negative
integers form a group under multiplication modulo n. In other words, let S be a subset of
Zy, consisting of numbers coprime to n; that is, S = {k; eN } 1 <k <nandged(k,n) = 1}.
Then (S,®) is a group; that is,

1. S is closed under multiplication ;
2. there ezists an multiplicative identity 1 (that is, a® 1 = a for all a € S), and

3. every element in S has an multiplicative inverse element (that is, for each a € S there
exists b€ S such that a ©b = 1).

Proof. Tt suffices to prove 1 and 3.

1. Let a,b e S. Then a - b is coprime to n; thus Proposition 6.12 implies that a - b mod

n is coprime to n as well. Therefore, a®be S.

3. Let a€ S. Then theset a®S = {a@s ‘ S €E S} is a subset of S. Moreover, if s1,s9 € .S

satisfying that a ©® s; = a © s9; that is, a-s; = a-ss (mod n), then s; = s9; thus

#(a® S) = p(n). This fact shows that there exists s € S such that a ©® s = 1. o

Definition 6.16. The multiplicative group of integers modulo n (given in Theorem 6.15)
is denoted by (Z?,®).

Theorem 6.17. Letne N andae€ Z:. Ifa-x+n-y =1 for some x,y € Z, then
a'=x (modn),

where a=' denotes the number in Z* satisfyinga®a ' =a'©Qa=1.

Theorem 6.18 (Euler). Let a,n € N be such that gcd(a,n) = 1. Then a®™ =1 (mod n).

144

Proof. Let aZ} be the set aZi = {a-s|s € Z%}. Then the set (aZ} mod n) = {(a -

s) mod n ‘ se ZZ} is identical to Z. Therefore, Proposition 6.13 implies that

sz H k (mod n).

keZ¥ keaZ¥

Since [] k=a*™ [kand [] k is coprime to n, by the cancellation law for Z, (Propo-
keaZ¥ keZ¥ keZ¥

sition 6.14) we find that a®™ =1 (mod n). D

Corollary 6.19 (Fermat little theorem). Let p be a prime number, and a € N satisfy

ged(a,p) = 1. Then a?~' =1 (mod p).

6.1.2 Encryption based on factoring large numbers

The RSA algorithm involves four steps: key generation, key distribution, encryption, and

decryption.

Key generation
The keys for the RSA algorithm are generated in the following way:

1. Choose two distinct prime numbers p and gq.

(a) For security purposes, the integers p and ¢ should be chosen at random and should
be similar in magnitude but differ in length by a few digits to make factoring

harder. Prime integers can be efficiently found using a primality test.

(b) p and ¢ are kept secret.
2. Compute n = pq.

(a) n is used as the modulus for both the public and private keys. Its length, usually
expressed in bits, is the key length.
(b) n is released as part of the public key.

3. Compute p(n), where ¢ is the Euler function. By Proposition 6.7, ¢(n) = (p—1)(¢g—1).
©(n) is kept secret.

4. Choose an integer e such that 1 < e < ¢(n) and ged(e, p(n)) = 1; that is, e and ¢(n)

are coprime.

145

(a) e having a short bit-length and small Hamming weight results in more efficient
encryption - the most commonly chosen value for e is 2'¢ 41 = 65537. The
smallest (and fastest) possible value for e is 3, but such a small value for e has

been shown to be less secure in some settings.

(b) e is released as part of the public key.

5. Determine d as d = e~! (mod ¢(n)); that is, d is the modular multiplicative inverse

of e modulo ¢(n).

(a) This means: solve for d the equation d - e = 1 (mod ¢(n)); d can be computed
efficiently by using the extended Euclidean algorithm, since, thanks to e and ¢(n)
being coprime, said equation is a form of Bézout’s identity, where d is one of the

coefficients.

(b) d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The
private key consists of the private (or decryption) exponent d, which must be kept secret. p,
q, and p(n) must also be kept secret because they can be used to calculate d. In fact, they
can all be discarded after d has been computed.

Note: The authors of the original RSA paper carry out the key generation by choosing d
and then computing e as the modular multiplicative inverse of d modulo ¢(n), whereas most
current implementations of RSA, such as those following PKCS#1, do the reverse (choose
e and compute d). Since the chosen key can be small, whereas the computed key normally
is not, the RSA paper’s algorithm optimizes decryption compared to encryption, while the

modern algorithm optimizes encryption instead.

Remark 6.20. In modern RSA implementation the use of Euler function ¢ is replaced by

Carmichael’s totient function A defined by
A(n) = min {k € N| a* =1 (mod n) for all a e Z*} .

If n = pg with prime numbers p and ¢, then A\(n) = lem(p — 1,¢q — 1), the least common
multiple of p — 1 and ¢ — 1.

Remark 6.21. If both n and ¢(n) are known, then two primes p and ¢ satisfying
n=pg,p(n)=({p-1(¢-1)

can be solved easily since p and g are zeros of z2 + [p(n) — (n +1)]z +n = 0.

146

Key distribution

Suppose that Bob wants to send information to Alice. If they decide to use RSA, Bob
must know Alice’s public key to encrypt the message, and Alice must use her private key
to decrypt the message. To enable Bob to send his encrypted messages, Alice transmits her
public key (n,e) to Bob via a reliable, but not necessarily secret, route. Alice’s private key
(d) is never distributed.

Encryption

After Bob obtains Alice’s public key, he can send a message M to Alice.

To do it, he first turns M (strictly speaking, the un-padded plaintext) into an integer
m (strictly speaking, the padded plaintext), such that 0 < m < n by using an agreed-upon
reversible protocol known as a padding scheme. He then computes the ciphertext ¢, using

Alice’s public key e, corresponding to
c=m° (mod n).

This can be done reasonably quickly, even for very large numbers, using modular exponen-
tiation. Bob then transmits ¢ to Alice. Note that at least nine values of m will yield a

ciphertext ¢ equal to m, but this is very unlikely to occur in practice.

Decryption

Alice can recover m from ¢ by using her private key exponent d by computing

= (m)*=m (mod n).

Given m, she can recover the original message M by reversing the padding scheme.
Example 6.22. Here is an toy example of RSA encryption and decryption.

1. Choose two prime numbers p = 11 and ¢ = 31.

2. Compute n = pg = 341.

3. Compute ¢(n) = (p—1)(¢g —1) =300 / (A(n) = lem(10,30) = 30).

4. Choose the encryption key e = 17 so that 1 < e < ¢(n) and ged(e,o(n)) =1 /
(1 <e < A(n) and ged(e, A(n)) = 1).

147

5. Compute the decryption key d by Euclid’s algorithm (and Theorem 6.17):

300 =17 x 174+ 11 30=17x1+13
17=11x1+6 17=13x1+4
11=6x14+5 13=4x3+1
6=5x1+1 4=1x14
5=1x5+0

which implies that 300 x (—=3) + 17 x 53 =1 (30 x 4 + 17 x (=7) = 1); thus d = 53
(d = —7 (mod 30) or d = 23).

TR e Jlrila] sl
-1 | 300 1 0

-1 130 1 0
017 |17 O 1

011711 0 1
111 |1 1 | -17

1 (131} 1]-1
2 6 1 | -1 18

214 13|-1| 2
31 5 112 |-=35 3l 114l 4 7
411 5 | =3 | 53

Therefore, to encrypt m = 30, we raise to the power of 17 and obtain the encrypted message:
30" =123 (mod 341) .
To decrypt the encrypted message, we raise it to the power of 53 (23) and obtain that
123%% = (123%)'7 . 123% = 30'7 - 125 = 123 - 125 = 30 (mod 341)

(123% = (123%)7- 1232 =307 - 125 = 123 - 125 = 30 (mod 341)) .

6.2 Reduction from Factoring to Period-finding

The crucial observation of Shor was that there is an efficient quantum algorithm for the
problem of period-finding and that factoring can be reduced to this, in the sense that an
efficient algorithm for period-finding implies an efficient algorithm for factoring. We first
explain the reduction. Suppose we want to find factors of the composite number N > 1.
We may assume NN is odd and not a prime power, since those cases can easily be filtered

out by a classical algorithm. Now randomly choose some integer = € {2,--- , N — 1} which

148

is coprime to N. If z is not coprime to NV, then the greatest common divisor of x and N is
a nontrivial factor of N, so then we are already done. From now on consider x and N are

coprime, so x is an element of the multiplicative group Z}. Consider the sequence
l1=2"mod N, z'mod N, 2z’ mod N,---

This sequence will cycle after a while: there is a least 0 < r < N such that 2" = 1 (mod
N). The smallest such number r is called the period of the sequence (a.k.a. the order of

the element z in the group (Z3,®)). If r is even, then

2" =1 (mod N) < (2"/*)? =1 (mod N) < (2> +1)(2"/> = 1) = 0 (mod N)
< ("2 +1)(2"/* = 1) = kN for some k € N.

Because both 27/2 +1 > 0 and 2/2 — 1 > 0 (due to the fact that z > 1), we must have
k # 0. Hence 27/2 + 1 or 2’/?> — 1 will share a factor with N. Note that 2™/? # 1 mod
N for otherwise r/2 is a period of f, a contradict to the assumption that r is the smallest
period. In other words, ged(2"/2 — 1, N) # N. It is still possible that ged(z"/2 —1,N) =1
and this is equivalent to that ged(2"/2 + 1, N) = N. Therefore, we are able to factor N if
ged(2/2 4+ 1,N) < N.

Assuming that NV is odd and not a prime power, it can be shown (in Theorem 6.37) that
with probability not less than 1/2, the period r is even and 27/2 + 1 and 2'/? — 1 are not
multiples of V.

Accordingly, with high probability we can obtain an even period 7 so that ged(2"/2+1, N)
is a non-trivial factor of N. If we are unlucky we might have chosen an x that does not give
a factor (which we can detect efficiently), but trying a few different random x gives a high
probability of finding a factor.

The factorization algorithm above is summarized as follows. Let N be an odd natural

number N that has at least two distinct prime factors.

Step 1: Choose x € {2,--- , N — 1} and compute ged(x, N).
(a) If ged(x, N) > 1, then ged(x, N) is a non-trivial factor of N and we are done.
(b) If ged(z, N) = 1, then goto Step 2.

Step 2: Determine the period r of the function f (a) = 2® mod N.

(a) If r is odd, goto Step 1.

149

(b) If r is even, goto Step 3.

Step 3: Determine ged(z™/2 + 1, N).
(a) If gcd(x7/2 41, N) = N, then goto Step 1.

(b) If ged(x™/2 4+ 1, N) < N, then ged(z™/2 + 1, N) is a non-trivial factor of N and

we are done.

Thus the problem of factoring reduces to finding the period r of the function given by
modular exponentiation f(a) = 2 mod N. In general, the period-finding problem can be
stated as follows:

The period-finding problem: We are given some function f : N — {0,1,--- | N —1} with
the property that there is some unknown r € {0,1,--- , N — 1} such that f(a) = f(b) if and
only if a = b mod r. The goal is to find r.

A naive algorithm to find the period is to compute f(0), f(1), f(2), - - - until we encounter
the value f(0) for the second time. The input at which this happens is the period r that we
are trying to find. The problem with this approach is that r could be huge, polynomial in N.
To be efficient, we would like a runtime that is polynomial in log N, since that is the bitsize of
the inputs to f. It is generally believed that classical computers cannot solve period-finding
problems efficiently. We will show below how we can solve this problem efficiently on a
quantum computer, using only O(loglog N) evaluations of f and O(loglog N) quantum
Fourier transforms. An evaluation of f can be viewed as analogous to the application
of a query in the previous algorithms. Even a somewhat more general kind of period-
finding problems can be solved by Shor’s algorithm with very few f-evaluations, whereas
any classical bounded-error algorithm would need to evaluate the function Q(N'/3/y/log N)

times in order to find the period.

6.3 Shor’s Period-finding Algorithm

Before proceeding to the discussion of Shor’s algorithm, let us point out that the period-
finding problem in the previous section can be related to the phase estimation problem in

the following sense: given x € Z%,, the (unitary) map

Uly)=|rQy)=|r-y mod N)

150

has an eigenvector

1)) = L ri:l exp (27”5%) 2% mod N)
VTS

for each 0 < s < r since

Ulsy = Z exp (27”8k>U]a:k mod N) = Z exp (27rzsk> |z* mod N)
. r—1 .
— \/L? exp (WTZS> Z exp (_—27rzs(f + 1)> |:EkJrl mod N)

1 27 2misl
= —exp (7rzs> exp (— s >|xe mod N)
r

_ 1 exp (27;£> Z exp (— 27TZS€> |z mod N) = exp (27TZS> |9s) .

Therefore, the phase estimation algorithm introduced in Section 5.5 can be applied to find

r as long as the eigenvector [i)s) is known (even though we do not know |[i)) for s # 0).

Now we will show how Shor’s algorithm finds the period r of the function f, given a
“black-box” that maps |a)|0X) — |a)|f(a)). We can always efficiently pick some ¢ = 2 such
that N? < ¢ < 2N?. Then we can implement the Fourier transform QFT, using O((log N)?)
gates. Let Oy denote the unitary that maps |a)|0%) — |a)|f(a)), where the first register
consists of L qubits, and the second of K = [log, N]+ 1 qubits.

o H H HZ
: QFT
Register A
: N = o H — QFT A
start with |0%) Hor
o H%H HA

10)

Register B
<
start with |05

10)

Figure 6.1: Shor’s period-finding algorithm

Shor’s period-finding algorithm is illustrated in Figure 6.1. Start with [¢)g) = [0L)]05).

151

Apply the QFT (or just L Hadamard gates) to the first register to build the uniform super-
position

. LS 0f
1) = (HO" @1k)|thy) = \/C—];)| 2107,

where I denotes the identity map on the second register. The second register still consists

of zeroes. Now use the “black-box” to compute f(a) in quantum parallel:

19
[U2) = Oglthy) = NG az:;) lay f(a)).

Next we apply the quantum Fourier transform QFT to the first register to obtain the
quantum state |3) = (F, ® Ix)[t)2). Finally, we measure the first register and obtain a
number b and wish to find the period of f based on this observation.

Some of the measurement b obtained by Shor’s algorithm above are useless. The mea-
surement b becomes useful for us to determine the period r if b belongs to the set

E:{beNu{O}‘Ogbéq—land}b—c‘<12forsomeceZ;f},
q T 2r

where we recall that Z} is the collection of numbers from {1,--- ,r — 1} that are coprime
to r so that #Z* = ¢(r). We note that E is indeed unknown to us (since r is unknown to

us) but it exists and is a non-empty set. We will show in Section 6.5 that the probability of

obtaining b € E by Shor’s algorithm is not less than This implies that if we apply

10In L~

I k

which is quite small when £ is large.

Suppose that we apply Shor’s algorithm and obtain one such b € F. Then there exists
b 1

c € Zy such that ‘f — E} <53 We note that in this inequality we only know b and ¢ (so
q T T

is the number x = b/q), but both ¢ and r are unknown to us. Even though ¢ and r are

unknown to us, the fact that ¢ € Z* implies that € is an irreducible fraction (% i) .
T

Therefore, if there is a fast algorithm to find all irreducible fractions n satisfying
m

n 1
r——| < — and m<N, 6.2
‘ ml ~ 2m? (6:2)
we can check whether the denominators m of all such irreducible fractions satisfying m < N
is the period of f. In Section 6.4 an efficient algorithm based on continuous fractions is

proposed to find all irreducible fractions L satisfying (6.2).
m

152

Shor’s period-finding algorithm: Let f: Nu {0} — N U {0} be a periodic function with
period r satisfying 19 < r < 2/2 for some L € N such that f is injective within one period
and is bounded by 2% — 1.

Step 1: Prepare the oracle Uy (or Oy) satistying
Utlaylby = [a)lb® f(a)) Vae{0,1}"be {0,1}7.
Step 2: Measure the first register of the quantum state
(Fpr @ L) Up(HE @ 1) ([07) @ [07)) .
and obtain b.

Step 3: Use continuous fraction algorithm to find all irreducible fractions % satisfying
b n 1 L/2
‘Q—L — E’ Py and m < 282

(a) If one of such denominator m is the period of f, we are done.

(b) If none of these denominators m is the period of f, then b ¢ E and goto Step 1.

6.4 Continued fractions

A continued fraction, or simply CF, is a real number of the form

1
ag +

air +

a2+i

The continued fraction above is denote by [ag; a1, a9, - -] (here the number of a;’s can be
finite or infinite), and the a;’s are called the partial quotients. We assume these to be positive
natural numbers. [ag;- -, a,] is the n-th convergent of the continued fraction [ag; a1, as, - - -],

and can be simply computed by the following iterative scheme: if

Po = ag, P1 = A109 + 17 Pn = QpPn—1 + Pn-2,

(6.3)
Go=1 ¢ =a, Gn = AnGn—1 + Gn—2 .
then [ag;- -, ay], in its lowest terms, is 2;—"; that is,
Pn
[CL();“' aan] = ng(pnaQn) =1.

an

153

Note that ¢, increases at least exponentially with n since ¢, > 2¢,_2. Given a real number

x, the following “algorithm” gives a continued fraction expansion of x:

ap = [z], r1=1/(x —ag),
ar = [z1], za=1/(21—ai1),
agE[Z‘Q], .2173—1/(.172—&2),

Informally, we just take the integer part of the number as the partial quotient and continue

with the inverse of the decimal part of the number.

Example 6.23. Let © = /2. Then ay = 1 and a;, = 2 for all kK € N. To see this, we note

that z; = = /2 4+ 1 so we have a; = 2. This then shows that

1 1
2= 1 —ay B V24+1-2 =V2+1
and as a consequence as = 2. Repeating this process, we find that 2, = v/2 + 1 and a; = 2
for all £ e N.
Using (6.3), we obtain that

1
V2 -1

n 1 2 3 4 > 6 7 8 9

Dn 3 7 17 41 99 239 7T 1393 3363

n 2 5 12 29 70 169 408 985 2378
‘x — z—" 0.0858 | 0.0142 | 0.0025 | 4.2e-4 | 7.2e-5 | 1.2e-5 | 2.1e-6 | 3.6e-7 | 6.3e-8

Theorem 6.24. For an © € R, the sequence {a;} constructed from the algorithm above

terminates if and only if x is rational.

The convergence of the CF approximate x follows from the fact that

n 1
if © = [ag;--- ,ay), then ‘I—p— < =

! gk

Recall that g, increases exponentially with n, so this convergence is quite fast. Moreover,

Pn/qn Provides the best approximation of z among all fractions with denominator not greater

than q,:

ifn}l,qéqn, ;«é— thn‘x—& <‘x—£
Qn dn q

The following theorem shows how one accomplish Step 3 in Shor’s period-finding algo-

rithm.

154

Theorem 6.25. Let b,q € N be given and let |ag; a1, -+ ,a,] be the continued fraction of

their quotient; that is

b
5 = [G();@lf" 7an] .
If c,r € N are such that
b ¢ 1
L <
q T 2r
. . . b . . .
then < is a convergent of the continued fraction of —; that is, there exists a j € {0,1,--- ,n}
r q
such that
¢) Dj
— = a[o’a’...’afzi
r [1]] 4

where p; and q; are as constructed by (6.3).

6.5 Efficiency of Shor’s Algorithm

6.5.1 Shor’s period-finding algorithm

Shor’s algorithm can be applied to find the period of a more general class of periodic

functions.

Theorem 6.26. Let f: N u {0} — N U {0} be a periodic function with period r satisfying
19 < r < 252 for some L € N such that f is injective within one period and is bounded by

2K — 1, and Uy be an (L + K)-qubit quantum gate satisfying
Uslayby = [a)|b @ f(a)), Yae{0,1}",be {0,1}".

Then each application of Shor’s algorithm provides the period r with a probability of at least
1

10In L~

Proof. Let M =max {f(a)|0<a<2Y—1} and K € N with M < 2X, and H be the usual
qubit Hilbert space with basis {|0), |1)}. Set |1)o) = [0X)®|0%). Then with Ix denoting the
identity map on H®K,

2Ll 1

L 1 K
1) = (H®" @ 1k)|h) = NGTA ;) la)®107).

Applying Uy to [¢1), we find that

oL 1

1
[2) = Uglthr) = oD ;) la)®|f(a)).

155

Define m = [E] , the largest integer smaller than 2LT_1, and R = (2 —1) mod r. Then
m—1r-1
[¥2) = —= \/27 2 lirre®lIf(s >+Z|m7’+8>®|f()
j=0 =0
Define m, = m — 1(g«)(s); that is, my = m if s < R and my = m — 1 if s > R. Then
r—1 ms
[¥2) = \/Q—L;);)\JT +5)®[f(s)).

Next we apply the quantum Fourier transform to the first L qubits of |i)9) and obtain that

s = (Fys @ 1)) = fZi (Faljr +) ® |£(s))
- 22 2 esp (2L 1y o ()

Now we measure the input register, and let P(b) denote the probability of observing |b)
upon measurement. Let E be the collection of b € {0,1,---,2% — 1} such that there exists

ce{0,-- — 1} satisfying |— - f‘ < — 1 5 and ged(c,r) = 1; that is,

:{beNu{O}‘O<b<2L—land|2£L ‘<—forsomeceZ*}

We note for each be {0,--- ,2F — 1},

17“1mé

P(b) = J2L Z ’ Z exp <27r7,<ﬂ2+8)b>‘

=0
1 —1 ms

(J1r + 8)b (jor + 5)b
= Qﬁ 2, [IJZQ 0exp (QWZQ—L) exp (—27722—L>]
1 —1 mg

= ﬁ [Z exp (27?2‘%—?) exp (2%2‘7;—26”

s=0 j17.j2:0
1 S jgrby |2
— 5L ;} ’ [jz;)exp (27?22—L>’ .

Since
d+1 ifa=1,

d
Jj
Za = 1_ad+1
=0

l1—a

ifa#1,

156

we obtain that

me + 1 1fif.jeNu{0},

ms j?“b - (ms+1)rb
Z exXp <27TZ2—L> = 1— eZﬂiziL
1—e™2f
thus
r—1 b
22L2m5+1) if 7 e Nu {0},
s=0
P(b) - 1 (ms-zl)rb 9 b
— 6 2 T
22LZ’ ’ if 27 ¢ N U {0},
Define

B:{beNu{O}‘0<b<2L—1aHd ‘Tb—c2L‘<gforsome (unique)cer}.

We note that the fact that r < 2%/2 implies that if b € B,

ro1 1 1
b— 2t <= — = < .
@2"| 9yl ~ 2.9 T 22

b Cp

1
o |l
In other words, B < E. Let be B.

1. The case — € N U {0}: In this case

r—1 R r—1
P(b) = %Z(m +1)2 = %[Z(mqt)2+) mQ}

%[(RJF)(m+1)2+(r—1—R)m2}
. L 1
22L

L_1q

L[4 vm? 41— Rym?] = %("’2—?)2

Recall that m = [2 } By the fact that r < 2% and

r—1=21)modr=2"—1—mr,

r

1——>1-— L Therefore,

we find that 2L > 5L NoTR

157

2. The case — ¢ N u {0}: Suppose that ce {0,1,--- ,r — 1} satisfies

r
rb— 2" < 3. (6.4)
Then
- (ms+1)rb i (ms 1) (rb—)
1 &Gl =™ 12
PO) = 5 | =m 2
(0) 22L ; 1— 627”'2% 92L Z i 2£2L

rb 02 ’

1 TZSln T 2" (my + 1)
-2 sin? b2

where we have used the identity |1 — e¥| = 2} sin g} to conclude the last equality. Let

b— 2k
o= W% Then
T

] < r - s

| x 2_L ’ 5 2%+1

sin? B(ms + 1)
sin® 3

<

b

Within this range, the function g — cannot attain its minimum in the

interior of the interval and we have

sin® o2 2 (my 4+ 1) _ sin®a(m, +1) - sin® o (m + 1)

- i02 = 2 7r
sin 7T'b2£2 sin” «v sin” 573

m
Vil < —.
ol <2

Note that the fact that m < m,+1<m+1and R = (2L — 1) mod r imply that

(ms—i—l) mr mr+R+1 R+1 R+1 r
A S U S R e T2
and
r(ms+1) r(m+1) mr+R+1 r—R-1 r
< - + <1+ —.
2L 2L 2L 2L 2L

2
Therefore, the inequalities sin? x < 2% and cosz > 1 — % for all for all x € R show

that

sin? 77222 (m + 1) sm2 Wﬁilﬂ 2L+1 . o mr(ms + 1)
sin W”’—CQ ~ n? n° 57t (> 2L+1
2L+1 T 2L+ 2 1/m r\2]2
> (5[50 2] > () [-2Gao)
22L+2 - 2y 92042 2
7TT2 [(5\/_7> } _W(l_%“)’

158

thus

2

1 r—1 92L+2 2 92L+2 2 4
P) > > (1—7T):L (1—”):-(1—L>.
22L — 272 9L+2 2L 122 9L+2 2 9L+2

For L > 4, we have

4 1 w2 <11 1 '
(1t gm) < (-)

4<1JT_2
9L+2

thus

P = ><P(b) ifbe Band L >4,

-

Now we find a lower bound for P(E), the probability of measuring an element of E. By
the definition of B for any b € B there exists ¢ € Z} satisfying (6.4). Moreover, if ¢, ¢y € Z*
satisfy ‘Tb - 012L‘ < g and ‘Tb - CQQL} < g, then

rb rb
+e

oL c —Q—L’<2%<\rb—012L|+|rb—022L|><2LL<1.

‘01 - 02} < ’01 -

Therefore, for any b € B there exists a unique ¢ = ¢, € Z satisfying (6.4). On the other hand,
by the fact that r < 2L/2 every ¢ € Z* corresponds to a unique b = b, € {0,1,--- ,2L — 1}
such that (6.4) holds: if b; and by both satisfy (6.4), then |b; — by| = 1 and

by + by

=2k
B r C

which, by the fact that ged(by + by, 2571) = 1, implies that 2X71r; a contradiction.

12k 2x 2L (r— Dyx2"

Figure 6.2: The distribution of br and 2% for various b and c.

Therefore, there is an one-to-one correspondence between Z; and B; thus if L > 4,

P(E) =Y P(b) > Y P(b) > Z%r@—#)

beE beB beB
_#BA m N _#LA T
_TF< B 2L+2> T P(_2L+2>

ST,

r o a2 9L+2

159

A famous result in number theory implies that

L <4lnlnr V¥r>19;

(1)
thus if r > 19 (so that L > 9),
P(E)>%<1—”—2> L .1
T 211/ 4Inlnr ~ 10InL
Once we measure a b € E, we make use of continuous fractions to find the period r. =

6.5.2 The period of f(a) = z” mod N is most likely even

In this sub-section we focus on proving the following

J
Theorem 6.27. Let N € N be odd with prime factorization N = Hp]'-jj, where py, - -,
j=1
p, are distinct prime numbers. For a randomly chosen b € Z7;, the probability of that

rEmin{reN}brzlmod N} is even and b"/2 +1 mod N # 0 is at least 1 —

92J-1"

In the application of the factoring algorithm proposed in the previous sections, J = 2 so
that the probability of that for a randomly chosen b € Z% the number ged(b"/? +1,N) is a
prime factor of N is at least 1/2.

Let N € N. Recall that Z% consists of numbers from {1,2,--- , N — 1} that is coprime
to N; that is,

Zy={neN|1<n<N-1andged(n,N)=1}.
The number of elements in Z% = ¢(N), where ¢ is the Euler function (given in Definition
6.6).

Definition 6.28. Let b, N € N with ged(b, N) = 1. The order of b in Z%,, denoted by
ordy(b), is the period of the function f(x) = b — 1 mod N. In other words,

ordy(b) = min{r e N|b" =1 mod N}.
If ordy (b) = ¢(N), then b is called a primitive root modulo N.

Theorem 6.29. Let a,b, N € N with ged(a, N) = 1 = ged(b, N). Then the following

statements hold.

1. For all ke N, a* =1 mod N if and only if ordy(a)|k.

160

2. ordy(a)|p(N); that is, ordy(a) is a factor of p(N).

3. If ordy(a) and ordy(b) are coprime, then ordy(ab) = ordy(a)ordy(b).

4. If a is a primitive root modulo N; that is, ordy(a) = ¢@(N), then we also have
(a) Zy = {a’ mod N|1<j<@(N)}.

(b) If b= a’ mod N for some j € N, then

. N QO(N)
ordy(b) = ordy(a’?) = 2l o))

Proof. Let a,b, N € N with ged(a, N) =1 = ged(b, N).

1. (“=7) Let k € N satisfying a* = 1 mod N. Then k > ordy(a). Let ¢ = k mod
ordy(a); that is, there exists ¢ € N such that k& = ¢ - ordy(a) + ¢ for some ¢ €
{0,1,--- ;ordy(a) — 1}. Then

1 =a* mod N = % W@+ 1mod N = ¢° mod N ;

thus by the definition of the order we must have ¢ = 0. Therefore, ordy(a)|k.

(“<") Suppose that ordy(a)|k. Then k = ¢ - ordy(a) for some g € N. Therefore,

a* mod N = %@ mod N = 1.

2. By Theorem 6.18, we know that a?®) =1 mod N thus part 2 follows from part 1.
3. By Proposition 6.13, the rule of multiplication in Z73,, we find that
(ab)ordN(a)ordN(b) mod N = aordN(a)bordN(b) mod N = 17

thus part 1 implies that
ordy (ab)|ordy(a)ordy(b) . (6.6)

On the other hand, by the fact that p°rdv®ordn(ab) — 1 mod N,

aordN(b)ordN(ab) mod N = aordN(b)ordN(ab)bordN(b)ordN(ab) mod N

_ (ab)ordN(b)OrdN(ab) mod N = 1.

161

Therefore, part 1 shows that
ordy(a)|ordy(b)ordy(ab) .

By the assumption that ordy(a) and ordy(b) are coprime, we must have ord y(a)|ordy (ab).

Similarly, we also have ordy(b)|ordy(ab). Therefore,
ordy(a)ordy (b)|ordy(ab)
which, together with (6.6), shows the desired result.
4. Suppose that ordy(a) = ¢(N).

(a) First we note that Theorem 6.15 implies that {a’ mod N |1 < j < ¢(N)} < Zj.
It then suffices to show that

#{a’ mod N |1<j<¢(N)}=¢pN). (6.7)

Let 4,7 € N with 1 <4 < j < p(N), and suppose that a’ = @/ mod N. Then
a’~" =1 mod N. Therefore, part 1 shows that ordy(a)|(j — 7). Since ordy(a) =
©(N) and 1 <i < j < ¢(N), we must have i = j; thus (6.7) holds.

(b) We first establish the first “=" of (6.5); that is, if b = o/ mod N, then ordy(b) =
ordy(a’). To see that, we note that the identity

1 =090 mod N = (¢/ mod N)*V® mod N = (a?)*"® mod N
shows that ordy(a’) < ordy(b), while the identity
1= (a/)™@) mod N = (¢/ mod N)”W(@) mod N = 6% mod N

shows that ordy(b) < ordy(a?).

Next we focus on the second “=" of (6.5). We note that part 2 implies that
there exists m; € N such that m; -ordy(a?) = p(N); thus it suffices to show that

We remark that m; must satisfy m;|¢@(N). Moreover, since

1= (aj)ordN(aj) mod N = ¢/~ @) 164 N,

162

we have ordy(a)|j - ordy(a’). By the assumption that ordy(a) = ¢(N), there
exists my € N such that my - p(N) = j - ordy(a?). Therefore, j = mymy. In

particular, mq|7; thus the fact that mq|p(V) further shows that

my|ged(j, o(N)) .

Suppose the contrary that m; < m = ged(j, o(IN)). Then

r= SOE;LV) < 90751]\0 = ordy(a’). (6.8)

On the other hand, the fact that m|j shows that

@(N) 2

(a?)" mod N = (a/) % mod N = (a“p(N))m mod N
= (a*™ mod N)™ mod N =1.

Thus, we conclude from part 1 that ordy(a?)|7, a contradiction to (6.8). o

Lemma 6.30. Let p be a prime, k € NU {0}, and fo, f1, -+, [r be integers such that pt fi.
k

f;x7, then either
=0

If f is a polynomial given by f(z) =
j

L. f has at most k distinct zeros modulo p in Z,; that is,

#{erz‘f(x) =0 modp} <k
or
2. f is the zero-polynomial modulo p; that is, f(x) =0 mod p for all x € Z (or Zy).

Proof. We show this by induction in the degree of the polynomial, which we start at k£ = 0:
if f(x) = fo # 0 such that pt fy, then it follows that f, # 0 mod p, and there is no x € Z
with f(x) =0 mod p. If fy =0, then f is the zero-polynomial.

Suppose then the claim holds for all polynomials of degree up to k—1 and f is a poly-
nomial of degree k. If f has fewer than £k zeros modulo p in Z7, the claim holds already.
Suppose that f has at least k zeros modulo p, and ni, na, ---, ny € Z; are distinct zeros
of f modulo p (there may be more zeros of f modulo p, but we randomly pick & distinct

zeros). Then

g(x) = f(x) = fi

=

k-1
(x —n;) = 2 gext
=0

J=1

163

is a polynomial of degree not exceeding k — 1. Set m = max{¢ e {0,1, -+ ,k — 1}‘p tget,
and define §(x) = Y. gez’. Then for x € Z,

=0
m k—1
g(x) mod p = Z gox’ mod p = Z gex’ mod p = g(z) mod p.
=0 =0

Moreover, for 1 < j < k we have g(n;) = f(n;) = 0 mod p. Therefore, § has at least k zeros
modulo p; thus by the induction assumption § must be the zero polynomial. This shows

that ¢ is also the zero polynomial. By the definition of g,
k
f(x):fkn(a:—n]) mod p VoelZ.
j=1

Suppose that z is a zero of f modulo p. Then by the fact that p { fi, the cancellation law

for Z, implies that 2 —n; = 0 mod p for some 1 < j < k. =

Lemma 6.31. Let p be prime, d a natural number satisfying d|(p—1) and let h be the
polynomial h(z) = 2% — 1. Then there exist exactly d distinct numbers ny,ng,--- ,ng in Z,

satisfying h(n;) = 0 mod p.

k=1
Proof. Let k € N be such that p—1 = dk. Define f(z) = >, 2% and g = hf. Then

=0
k-1
_od a _ kd _ 1 _ p—1 _
g(x) = (z 1)2:1: =z l==x L.
=0

Therefore, g(x) = 0 mod p for all 2 € Z*. The cancellation law in Z, further implies that
for all x € Zy, either h(x) = 0 mod p or f(z) =0 mod p.

Since h(p—1) =p—2mod p and f (1) = k, h and f are not zero polynomials. By the fact
that the leading coefficient of f and h are both 1 (and p{ 1), Lemma 6.30 implies that the
polynomial h has at most d and the polynomial f has at most d(k—1) zeros modulo p in
Z%. Denoting the number of zeros modulo p in {1,---p—1} of the polynomials g, h and f
by Ny, Ni and Ny, we have

dk = N, < N, + Ny < d + d(k—1) = dk.

Therefore, exactly d(k—1) elements in Zy, are zeros of f modulo p, and exactly d elements

in Zy are zeros of h modulo p. =

164

Theorem 6.32. For ecvery odd prime p there exists at least one primitive root a modulo p;

that is, a natural number a such that
ord,(a) :min{reN‘aT =1 modp} =op(p)=p—1.

Proof. For a prime factor q of p — 1, let k, be the unique number satisfying ¢*«|(p—1) but
¢*t1 f (p — 1). We first prove that for each prime factor ¢ of p — 1 there exists a = a, € z:
such that ord,(a,) = ¢".

Let ¢ be a prime factor of p—1. By Lemma 6.31 we know that the polynomial h(x) =
29" —1 has exactly ¢¥¢ zeros modulo p in Z,. Let a4 be one of these zeros, then agkq = 1 mod
p so it follows that ord,(a,)|g". If this zero a, of h has the additional property ord,(a,)|¢’
for some j € N with j < k,, then ord,(a,)|¢"~* holds. Then

k

ag o mod p.

Hence, a, € Z is a zero modulo p of the polynomial f(z) = 29" —1. By Lemma 6.31,

kg—1

there are exactly ¢! of these. Of the ¢*¢ zeros modulo p in Zy, of h at most ¢ can be

zeros of f as well. This means that of the ¢* zeros a, of h at most ¢"~! such a, satisfy in
addition ord,(a,)|¢’ with j < k,. Therefore, there remain ¢*s—g*~! zeros a, € {1, -+ ,p—1}
that satisfy

ord,(a,)|q" and ord,(a) ¢ Vi<k,. (6.9)

1

Since ¢ is assumed prime, we conclude that there are ¢*7—¢"~! numbers a, € {1,2, -+ ,p—1}

satisfying ¢* = ord,(a,). This establishes the first statement.

Let g1, 42, -, qe be distinct prime factors of p—1. Rewrite k,; as k; and let ay, as, -+, ag
be one particular number in {1,2,--- ,p — 1} satisfying ord,(a;) = qu for 1 < 7 < {. Define
¢
a = || a;. Then a is a primitive root modulo p since
j=1

¢

ord,(a) = nordp(aj)

j=1
which can be shown inductively using part 3 of Theorem 6.29. =
Lemma 6.33. Let p be an odd prime and a be a natural number satisfying

ged(a,p) =1 and a?®mod p? # 1.

Then for all k € N, a?®) mod pF+! # 1.

165

Proof. We first note that if & € N, by the fact that ged(a,p®) = 1 the Euler Theorem
(Theorem 6.18) implies that

a?®") mod pf=1;

thus there exists n; € N such that
af®) — 1 Tt

Let D = {k; € N‘a"a(”k) modpFt! # 1}. By assumption, 1 € D. Suppose that k € D.
Then a#®") = 1 + mp*t! for all m € N. Therefore, p { ny. By Proposition 6.7,

o) =p"(p—1) = pp(p");
thus

P
qf@) _ pe®) _ (aso(p’“))p =1+ nkpk)p — 14+ nkpkﬂ 4 Z C’fnipw.

(=2

Therefore, by the fact that p { ny, we find that

a?®™) mod pF*? = (1 4 nyp"*!) mod pFt2 £ 1.

This shows that £+ 1 € D. The lemma is then concluded by induction. =

Theorem 6.34. Let p be an odd prime and a be a primitive root modulo p. Then for all
k € N either ord,.(a) = ¢(p*) orord,.(a+p) = p(p*); that is, either a or a+p is a primitive

root modulo p*.
Proof. Let a be a primitive root modulo p.

Case 1 - a*®) mod p? # 1: Let D = {k € N|ord,(a) = ¢(p*)}. Since a is a primitive root
modulo p, we find that 1 € D. Suppose that k € D. By the definition of the order

there exists n € N such that

aordpk+1 (a) — 1 + npk+1 — 1 + nppk .

ord k41 (a)

Therefore, a = 1 mod p* and Theorem 6.29 implies that ord,(a)lord w+1(a).

By the inductive assumption, ord,(a) = ¢(p*) = p*~(p — 1); thus

" H(p — 1)|ord, ks (a) .

166

This implies that there exists n; € N such that ord,e+1(a) = nyp*~*(p — 1). On the
other hand, Theorem 6.29 also implies that

Ol"dpk+1 (a)|g0(pk+1) = pk(p - 1) 3

thus there exists ny € N such that ny - ord e+ (a) = p*(p — 1). Therefore, nyny = p
which, by the fact that p is prime, shows that (ny,ns) = (1,p) or (ny,n2) = (p,1). If
(n1,n2) = (1,p), then orde+i(a) = p*~'(p — 1) = ¢(p*) which further shows that

a?®") mod ptl =1,

a contradiction to Lemma 6.33. Therefore, (n1,ns) = (p, 1) and we then have

ordpk+1(a) = pk(p - 1) = <P(pk+1> .

This concludes that k£ + 1 € D. By induction, D = N.

Case 2 - a*® mod p? = 1: First we note that in this case there exists ns € N such that
a?~' =1+ nzp?. Let r = ord,(a + p). Then 7|p(p) and

(a+p) modp=1.

By binomial expansion, a” mod p = 1 which further implies that ¢(p)|r. Therefore,
r = ¢(p); thus a + p is also a primitive root modulo p. Next we show that (a + p)#®

mod p? # 1. To see this, by binomial expansion we have
p—1
(a+pPt=a14+(p—1)a"?*p+ Z Cffla”_e_lpe
(=2
p—1
=1+ nsp® — paP~2 + p?aP~2 + p? Z Cf_lap_£_1p€_2
=2
=1+ nyp® — pa?=2.
Since (by Fermat little theorem) a?~! mod p = 1, p { a?~2; thus (a+ p)*®) mod p? # 1.
Therefore, Case 1 shows that ord,r+:(a + p) = p(pF*1). o

J
Theorem 6.35. Let N = [[n; with n; € N and ged(n;,n;) =1 if i # j. Then g : Z% —
j=1
Ly, XLy, % -+ x Ly defined by
gla) = (amod N1, amod no, - - - , amod nJ)

is a bijection.

167

Proof. We first show that g(Zy) < Z; x Z;, x --- x Z;, . For each 1 < j < J, let
gj(a) = a mod n;. Then g = (g1, -+ ,9s), and g;(a) € Z;, for all a € Z},. Let a € Z}
and j € {1,2,---,J} be given, and v = ged(g;j(a),n;). Then there exist £,k € N such that
gj(a) = v¢ and n; = k. Since

W =gjla) =a— [n%lnj =a— [%}’yk,
we find that
%:£+[%]k

Therefore, y|a. Moreover, n;| N, we must have v|N as well; thus the fact that ged(a, N) =1
implies that v = 1. In other words, gecd(g;(a),n;) =1 for all 1 < j < J, and this shows that
gj(a) € Zy, for all 1 < j < J; thus g(ZY) € Zy, x Ly, x -+ x Ly, .

Next we show that ¢ is injective. Suppose the contrary that there exist ai,as € Z%,
a; # ag, such that g(a;) = g(ag). W.L.O.G. we assume that a; > ay. Then for all
1 <j<J,gjla1) = gj(az); thus

al—agzqﬂ]—[%bnj Vi<jyj<J.

1 U

J
Therefore, nj|(a; — a2) for all 1 < j < J. Since ged(n;,n;) =1if i # j and N = [[n;, we
j=1
find that N|(a; — az), a contradiction. This establishes that ¢ is injective.

Finally, we prove that g is surjective. Let m; = N/n;. Then ged(m;, n;) = 1; thus there
exist x;,y; € Z such that m;z; +njy; = 1. For b= (by,--- ,by) € Z}; x L} x --- x L

ny’
define

h(b) = (imja:jbj> mod N . (6.10)

This definition of h is well-defined: if Z; and g; also validate m;z; 4+ n;y; = 1, then for all

168

1 <k < J, by the fact that n;/m; € N if j # k, we find that

1 m -
_ (z: — 3)b; = I — 5.)b, — 7D
nk;mj(%)b, 2 - (x; —;)b; + (g — Tg)bg

j#k T
_ Z b + MpZp — METg by
ek " Nk
. 1 — (1~ ~
= @(%’ — ;)b + (1= meg) — (1= i)y
ik Tk T,
m; . B
=2 (@ = E)b — (e — G)br € Z.
; N
ik
J
This shows that ny is a factor of > m;(x; — Z;)b; for all 1 < k < J. Since ged(n;, n;) = 1
7=1

J
if 1 # j, we also have N is a factor of Z j(x; — Z;)b;. Therefore,

<i mjijj> mod N = (i mji’jbj> mod N ;
Jj=1 j=1

thus h given by (6.10) is well-defined.
Now we show that g is surjective by showing that h(b) € Z% and g(h(b)) = b for all
beZ) <7y x---xZr . LetbeZy xZ% x---xZL% begiven. Fora fixed ke {1,2,---,J},

= (h(b) — by) :ni[(im]x] b;) mod N — by

1 S mysb;
-— Z [N N — b

=S Mo b 4 TR 1bk | Zimyasb | N <7
oLl i N iy
Therefore, for each 1 < k < J there exists 2, € Z such that

It then suffices to show that h(b) € Z% since then gi(h(b)) = by which establishes that
g(h(b)) = b. Nevertheless, (6.11) implies that

169

The fact that ged(n;,n;) = 1 if ¢ # j further shows that ged(h(b), N) = 1; thus h(b) € Z}

and we conclude that ¢ is surjective. =

Lemma 6.36. Let p be an odd prime, k € N, and s € N u {0}. For a randomly chosen b
from Z3% with equally distributed probability 1/p(pF), the probability of that ord,.(b)/2° is

1
an odd number is not greater than 3" In other words,

(Vp, k, 3)(#{5 € Z | ordy (b) = 2°t with an odd t} < (p(p’f)> ,

DN | —

Proof. Let p, k and s be given. By the definition of the Euler function, #sz = p(p").

Furthermore, there exist uniquely determined p, v € N with v odd such that

o) =p"(p—1)=2"v.

By Theorems 6.32 and 6.34 it follows that there exists a primitive root a € N for p* and
from Theorem 6.29 it follows that

Zk = {a’ mod p* |j € {1,2,--- ,0(p")}.

Hence, via the identification b = @’ mod p¥, the random selection of one of the equally
distributed b in Z;k is the same as the random selection of an equally distributed j €

{1, . ,gp(pk)}. Moreover, we know from Theorem 6.29 that

(M)
ordy (0) = 2230, o (7))

which shows that ord,.(b) = 2°¢ if and only if

sy 2k

By (6.12) we can deduce that the case s > p cannot occur because in that case we would
have v = 2°7#t - ged (7, 2#v) and thus 2|v, a contradiction to the assumption of an odd u in
@(p*) = 2#v. Therefore, for the event “ord,«(b)/2* is odd” to happen, we must have s < p.

Now consider the case s < p (so that the event “ord,:(b)/2® is odd” could happen).
Suppose that j = 2z for some odd x (in the identification b = a/ mod p*). Then

ged(j,2My) = aminterd [T pre (6.13)

p: odd primes

170

with some &, € N U {0}. In order to have ord,:(b) = 2°t, using (6.12) we obtain that
, v
ged(7,2%v) = 2“_5? . (6.14)

Since v and t are assumed odd, it follows that then v/t has to be odd as well. It then follows
from (6.13) and (6.14) that min{w, u} = p—s which shows w = pu—s; thus j takes the form
j = 2%z with an odd x and belong to {1, s gp(pk)}. In this set there exist 2°v multiples
of 2% namely

{279 X 1,207 % 2, -+ 2070 x 2°p},

Of these 2°v multiples of 2% only half are of the form j = 2#~*z with an odd x. Therefore,
when s < u the fact that all j are chosen with the same probability implies that the

probability of that ord,.(b)/2° is an odd number is given by

Number of possible j of the form j = 2#~*x with x odd

Number of possible j

which, using that s < pu, is not greater than 1/2. o

Finally, we restate and prove our main theorem in this sub-section.

J
Theorem 6.37. Let N € N be odd with prime factorization N = Hp;j, where py, -+,
=1

Ji
py are distinct prime numbers. For a randomly chosen b € Z}, the probability of that

r = ordy(b) is even and b"/* +1 mod N # 0 is at least 1 — %

Proof. Since by assumption N is odd, all its prime factors py, - - -, p; have to be odd as well,
and we can apply Lemma 6.36 for their powers p?j . We establish the theorem by showing

that the probability of that “r is odd” or “r is even but /2 +1 = 0” mod N is not greater
1

than 571"

By Theorem 6.35, we know that every b € Z} corresponds uniquely to a set of b; € Z;"lj
with 1 < j < J and vice versa, where n; = p?j and b; = b mod n;. An arbitrary selection of
b is thus equivalent to an arbitrary selection of the tuple (by,--- ,by) € Zy x -+ x Zy .

Suppose that r = ordy(b), r; = ord,,(b;) and write r = 2°¢, r; = 2%t; for some odd
numbers ¢ and ¢;. We first show that

r=lem(ry,ro, -0 ;1) (6.15)

171

where lem(rq, 79, - -+ ,7;) denotes the least common multiple of ry, 7o, - -+, ;. To see this,

note that for any k € N,
bf mod p,” = (b mod p;j)k mod p;’ = v* mod Py
thus r; is also the smallest natural number satisfying
b7 =1 mod p;’ . (6.16)

In other words, r; = ord,, (b). By the definition of r there exists z € N such that

J
b'=1+2zN = 1+2Hp;/j,
j=1
thus 0" = 1 mod p;’ for all 1 < j < J. Theorem 6.29 then shows that r;|r for all 1 < j < .J

so that we have
lem(ry, 7o, ,7y)|r. (6.17)

Let L = lem(ry, 7o, -+ ,75) and 1 < j < J. By Theorem 6.29 again L satisfies b = 1 mod
p]”-j; thus p;j is a factor of b* — 1. Since py,--- ,ps are distinct primes, we find that the
product of all p;-/j is also a factor of b” — 1. Therefore, b* = 1 mod N. Theorem 6.29 then
implies that r|L. Together with (6.17), we conclude (6.15).

Next we show that

the event “r is odd” v “r is even but /2> +1 = 0 mod N” corresponds to a (6.18)
subset of the set {(81,-" ,SJ)‘Sl =5y=---=5; =5 for some s e Nu {0}} '
Using (6.15), we find that 7 is odd if and only if all 7%s are odd. Therefore,
r is odd if and only if s; =0 forall 1 < j < J. (6.19)

Now we consider the case that r is even but /2 +1 = 0 mod N. Then there exists £ € N
such that /2 +1 = ¢N. Letting ¢; = (N /p,’, we have

b4 1=0pF V1<j<J;

thus
b/ 41 =0 mod ;. (6.20)

172

On the other hand, note that (6.15) implies that s; < s for all 1 < j < J. Suppose that

s; < s for some 1 < j < J. Then the fact that
28t =7r = k’j?"j = kaSjtj

shows that k; = 2°7%1t/t; is even. Let z; = k;/2. Then g = z;r; with z; € N; thus using
(6.16) we find that

b"/? mod p?j = b*" mod p;j = (b" mod p?j)zj mod p;/j =1 mod p;-/j =1,

a contradiction to (6.20). Therefore, we must have s; = s for all 1 < j < J if r is even but
b"/2 +1 =0 mod N. Together with (6.19), we conclude (6.18).

Since all s;’s are chosen independently, using (6.18) Lemma 6.36 implies that

0
P(“ris odd” v “0”% +1=0mod N”) < Y P(“s; = s forall 1 < j < J”)
s=0
0 0 J
_ Z HP(“Sj _ S”) _ Z P(“Sl _ S”) HP<“5J' _ 877)
s=0 j=1 s=0 7j=2

s=0 j=2
0
14 7 1 1
<) P(si=s)57 = 5
s=0

Therefore, the probability of that r = ordy(b) is even and 6/2 + 1 mod N # 0 is at least
1—

2]—1‘ 0

Chapter 7

Grover’s Search Algorithm

7.1 The Problem

The search problem: For N = 2", we are given an arbitrary x € {0,1}". The goal is to
find an 7 such that z; = 1 (and to output ‘no solutions’ if there are no such). We denote
the number of solutions in z by ¢ (that is, ¢ is the Hamming weight of z). This problem
may be viewed as a simplification of the problem of searching an N-slot unordered database.
Classically, a randomized algorithm would need O(N) queries to solve the search problem.
Grover’s algorithm solves it in O(v/N) queries, and O(v/N log N) other gates (the number

of gates can be reduced a bit further, see Exercise 7).

7.2 Grover’s Algorithm

Let Oy 4|ty = (—1)*|i) denote the +-type oracle for the input =, and R be the unitary
transformation that puts a — 1 in front of all basis states |iy whenever ¢ # 0, and that
does nothing to the basis state |0"). The Grover iterate is G = H®"RH®"O, 1. Note that
1 Grover iterate makes 1 query, and uses O(log, N) other gates. Grover’s algorithm starts

in the n-bit state |0™), applies a Hadamard transformation to each qubit to get the uniform

1 G . : : :
—— > |iy of all N indices, applies G to this state k times (for some
=0

VN ;

k to be chosen later), and then measures the final state. Intuitively, what happens is that

superposition |U) =

in each iteration some amplitude is moved from the indices of the 0-bits to the indices of
the 1-bits. The algorithm stops when almost all of the amplitude is on the 1-bits, in which

case a measurement of the final state will probably give the index of a 1-bit. Figure 7.1

173

174

illustrates this.

105 — I R I I B

0) — S I P e
07 = |0)®" ; Her| |G| | g G
‘On—3> —

I
I
I
I
I
P

05 — I I (R [

~
k copies of G

Figure 7.1: Grover’s algorithm, with k& Grover iterates

To analyze this, define the following “good” and “bad” states:

1 1
G) = i and B) =).
D= T2, 2= T

1) 2,=0)

Let t = #{i|x; = 1}. Then the uniform state over all indices edges can be written as

U) =

1 .

VN & ' _\F<{Z|§11} 2)
1

=N

{i]x;=0}

(\ﬂB>+\/ yG>) = §in |G + cos 0| B),

where 0 = arcsin

The Grover iterate G is actually the product of two reflections (in the 2-dimensional

space spanned by |G) and |B)): O, 4 is a reflection through |B), and
HE"RH®" = H®"(2[0" 0" | —)H®" = 2|UXU| — 1

is a reflection through |U). Here is Grover’s algorithm restated, assuming we know the

fraction of solutions is ¢ = t/N:
1. Set up the starting state |U) = H®"|0™)

2. Repeat the following & = O(1/4/¢) times:

175

(a) Reflect through |B) (that is, apply O, +)
(b) Reflect through |U) (that is, apply H®"RH®").

3. Measure the first register and check that the resulting ¢ is a solution.

Geometric argument: There is a fairly simple geometric argument why the algorithm
works. The analysis is in the 2-dimensional real plane spanned by |B) and |G). We start
with |U) = sin0|G) + cos 0| B): The two reflections (a) and (b) increase the angle from 6 to

360, moving us towards the good state, as illustrated in Figure 7.2.

G G G)
g|\uy
U) U) U)
O:c7i|U>

Figure 7.2: The first iteration of Grover: (left) start with |U), (middle) reflect through |B)
to get O,.+|U), (right) reflect through |U) to get G|U)

The next two reflections (a) and (b) increase the angle with another 26, etc. More

generally, after k applications of (a) and (b) our state has become
sin((2k + 1)0)|G) + cos((2k + 1)0)|B) .

If we now measure, the probability of seeing a solution is P, = sin?((2k +1)0). We want P,

~ 1 ~
to be as close to 1 as possible. Note that if we can choose k = I—e 5 then (2k 4+ 1)0 = g

and hence P, = sinzg = 1. An example where this works is if ¢ = N /4, for then § = 7/6

~ ~ 1
and k = 1. Unfortunately k£ = % -5 will usually not be an integer, and we can only do

an integer number of Grover iterations. However, if we choose k to be the integer closest to
k, then our final state will still be close to |G and the failure probability will still be small
(assuming t < N):
1 — P, = cos*((2k +1)0) = COS2((2% + 1)+ 2(k — %)0) = cos? (g +2(k — %)0)
= sin?(2(— F)6) < sin’(6) =

176

7 N
where we used |k — k| < 1/2. Since arcsin(6) > 6, the number of queries is k < % < %« s

Algebraic argument: For those who do not like geometry, here is an alternative (but
equivalent) algebraic argument. Let a; denote the amplitude of the indices of the ¢ 1-bits

after k Grover iterates, and b, the amplitude of the indices of the 0-bits. Initially, for the

1
if ition |U h =by = —. Si
uniform superposition |U) we have ag = by i ince
H®" =H, and R =diag(l,-1,-1,---,—1),
we find that
10 0 11 1
00 ---0 2 (1 1 1 2
HO"RH®" = H,, | 2 ~1|H, == —1=|5| -
R N N ’
00 -0 11 1
where [%] is the NV x N matrix in which all entries are %; thus we find the following
recursion:
2 N — 2t 2(N —t
Ap+1 = N[—tak+(N—t)bk} +ap = N ar + (N)bk,
2 —2t N —2t
b1 = —|—t N —t)b| — b = by .
k+1 N[ar + ()k} k Nak+ N O

With 6 = arcsin 4 /% as before, we have
apt1| | cos(20) 2cos? 8] |ay
bry1| | —2sin?@ cos(20)| |br| -
Since

—2sin?60 cos(20) ising —isinf| | 0 e 2| |isinf —isind

[cos(20) 2 cos? 9] _ [cos 6 cosf } {em 0 } [cos 6 cosf } -

we have

cosf cosf | a1 [e* 0 cos cosf 17" [ag .
isinf —isin@ besi| | 0 e |ising —isind b |’

177

thus
ar| [cos® cosf | [e? 0 "Tcos0 cos® 1 ' ag
bp| — |isind —isinf| | 0 e %% |isind —isiné by
1 Jcos® cosf | [e* 0 1 —isinf —cosf| [1
/N |isinf —isin6 0 e 2P| _9isinfcosh |—isinf cosf | |1

1 1 cos cos@ | [—ePFTVOT 1 Tsin(2k +1)0/sin6
~ VN —2isinfcos0 |isind —isin@| | e=@HDE | T /N |cos(2k +1)0/ cosf|

Therefore, we obtain the following formula for a; and by:

1 . 1
ap = 7i sin((2k + 1)0) and b = N cos((2k +1)0) .

Accordingly, after k iterations the success probability (the sum of squares of the amplitudes

of the locations of the ¢ 1-bits) is the same as in the geometric analysis
P, =t-a; = sin?((2k + 1)6).

Thus we have a bounded-error quantum search algorithm with O(4/N /t) queries, assuming

we know ¢. We now list (without full proofs) a number of useful variants of Grover:

1. If we know t exactly, then the algorithm can be tweaked to end up in exactly the
good state. Roughly speaking, you can make the angle @ slightly smaller, such that

- _Z becomes an integer
~ 10 2 8ot

2. If we do not know ¢, then there is a problem: we do not know which k to use, so
we do not know when to stop doing the Grover iterates. Note that if k gets too big,
the success probability P, = sin?((2k + 1)0)) goes down again! However, a slightly
more complicated algorithm (basically running the above algorithm with systematic
different guesses for k) shows that an expected number of O(+/N/T) queries still
suffices to find a solution if there are ¢ solutions. If there is no solution (¢ = 0), then

we can easily detect that by checking x; for the ¢ that the algorithm outputs.

3. If we know a lower bound 7 on the actual (possibly unknown) number of solutions t,
then the above algorithm uses an expected number of O(\/W) queries. If we run
this algorithm for up to three times its expected number of queries, then (by Markov’s
inequality) with probability at least 2/3 it will have found a solution. This way we

can turn an expected runtime into a worst-case runtime.

178

4. If we do not know t but would like to reduce the probability of not finding a solu-
tion to some small ¢ > 0, then we can do this using O(4/N log(1/¢)) queries. The
important part here is that the log(1/¢) is inside the square-root; usual error reduc-

tion by O(log(1/e)) repetitions of basic Grover would give the worse upper bound of
O(v/Nlog(1/¢)) queries.

7.3 Amplitude Amplification

The analysis that worked for Grover’s algorithm is actually much more generally applicable.
Let x : Z — {0,1} be any Boolean function; inputs z € Z satisfying x(z) = 1 are called
solutions. Suppose we have an algorithm to check whether z is a solution. This can be
written as a unitary O, that maps |2) to (—1)X(*)|z). Suppose also we have some (quantum
or classical) algorithm A that uses no intermediate measurements and has probability p of
finding a solution when applied to starting state |0). Classically, we would have to repeat A
roughly 1/p times before we find a solution. The amplitude amplification algorithm below
only needs to run A and A" O(1/,/p) times:

1. Setup the starting state |U) = A|0).
2. Repeat the following O(1/,/p) times:

(a) Reflect through |B) (that is, apply O,)
(b) Reflect through |U) (that is, apply ARA™!)

3. Measure the first register and check that the resulting element x is marked.

Defining # = arcsin,/p and good and bad states |G) and |B) in analogy with the
earlier geometric argument for Grover’s algorithm, the same reasoning shows that amplitude
amplification indeed finds a solution with high probability. This way, we can speed up a
very large class of classical heuristic algorithms: any algorithm that has some non-trivial
probability of finding a solution can be amplified to success probability nearly 1 (provided we
can efficiently check solutions; that is, implement O,). Note that the Hadamard transform
H®" can be viewed as an algorithm with success probability p = /N for a search problem
of size N with ¢ solutions, because H®"|0") is the uniform superposition over all N locations.
Hence Grover’s algorithm is a special case of amplitude amplification, where O, = O, 1 and
A =H®",

Chapter 8

The HHL Algorithm

8.1 The Linear System Problem

In this chapter we present the Harrow-Hassidim-Lloyd (HHL) algorithm for solving large
systems of linear equations. Such a system is given by an N x N matrix A with real or
complex entries, and an N-dimensional nonzero vector b. Assume for simplicity that N = 2™.

The linear-system problem is
LSP: find an N-dimensional vector x such that Az = b.

Solving large systems of linear equations is extremely important in many computational
problems in industry, in science, in optimization, in machine learning, etc. In many appli-
cations it suffices to find a vector ¥ that is close to the actual solution z.

We will assume A is invertible (equivalently, has rank N) in order to guarantee the
existence of a unique solution vector x, which is then just A='b. This assumption is just for
simplicity: if A does not have full rank, then the methods below would still allow to invert
it on its support, replacing A=! by the “Moore-Penrose pseudoinverse”.

The HHL algorithm can solve “well-behaved” large linear systems very fast (under certain
assumptions), but in a rather weak sense: instead of outputting the N-dimensional solution

vector z itself, its goal is to output the n-qubit state

=Tl 2 ZW

or some other n-qubit state close to |z). This state |x) has the solution vector as its vector

of amplitudes, up to normalization. This is called the quantum linear-system problem:

QLSP: find an n-qubit state |Z) such that ||z) —|Z)| < ¢ and Az =b.

179

180

Note that the QLSP is an inherently quantum problem, since the goal is to produce an
n-qubit state whose amplitude-vector (up to normalization and up to e-error) is a solution
to the linear system. In general this is not as useful as just having the N-dimensional vector
x written out on a piece of paper, but in some cases where we only want some partial
information about z, it may suffice to just (approximately) construct |z).

W.L.O.G. We will assume that A is Hermitian: if A is a non-hermitian N x N matrix,
then we consider the augmented linear system (of size 2N) Az = b, where with 0, denoting

the N x N zeros matrix and 0,, denoting the zero (column) vectors in RV,

A = 0N><N A : g _ b '
AT 0N><N 0N><1
Note that if x solves Ax = b (or equivalently, x = A~'b), then T takes the form 7 = {0;“1 .
Let us state the more restrictive assumptions that will make the linear system “well-

behaved” and suitable for the HHL algorithm:

1. We have a unitary that can prepare the vector b as an n-qubit quantum state
| N1
|b) = ol > biliy
o] =
using a circuit of B 2-qubit gates. We also assume for simplicity that ||b| = 1.

2. The matrix A is s-sparse and we have sparse access to it. Such sparsity is not essential
to the algorithm, and could be replaced by other properties that enable an efficient
block-encoding of A.

3. The matrix A is well-conditioned: the ratio between its largest and smallest singular
value is at most some k. For simplicity, assume the smallest singular value is not
smaller than 1/ while the largest is not greater than 1. In other words, all eigenvalues
of A lie in the interval [—-1,—1/k] U [1/k,1]. The smaller the “condition number” &
is, the better it will be for the algorithm. Let us assume our algorithm knows k, or at

least knows a reasonable upper bound on k.

8.2 The Basic HHL Algorithm for Linear Systems

Let us start with some intuition. The solution vector x that we are looking for is A~1b, so we

N-1
would like to apply A™! to b. If A has spectral decomposition A = >’ /\jaja}, then the map
j=0

181

A~! is the same as the map a; — —a;: we just want to multiply the eigenvector a; with

Aj
the scalar 1/\;. The vector b can also be written as a linear combination of the eigenvectors
N-1
aj: b= >, B;a; (we do not need to know the coefficients j3; for what follows). We want to

7=0

N-1
. 1 . .
apply A~ to b to obtain A™'b= Y 5; % normalized, as an n-qubit quantum state.
j=0 A

Unfortunately the maps A and A~! are not unitary (unless |A\;| = 1 for all j), so we cannot

just apply A~! as a quantum operation to state |b) to get state |z). Fortunately U = >4 =

Nil e aja; is unitary, and has the same eigenvectors as A and A~!. We can implement U
=0
;nd powers of U by Hamiltonian simulation, and then use phase estimation (Section 5.5) to
estimate the \; associated with eigenvector |a;) with some small approximation error (for
this sketch, assume for simplicity that the error is 0).

How does one invert the eigenvalues all together at the same time? This is done through
a smart design of multi-controlled rotation gates. Conditioned on our estimate of \; we can

then rotate an auxiliary |0)-qubit to

«ll 2)\2|0>+7|1>

(this is a valid state because |xA;| = 1). Next we undo the phase estimation to set the register
that contained the estimate back to |0). Suppressing the auxiliary qubits containing the

temporary results of the phase estimation, we have now unitarily mapped

1 1
la;)[0) — |a;) ® (1 - /{T)\]Q|O> + /~e/\3|1>> '

N-1

If we prepare a copy of |b)|0) = >, B;|a;»|0) and apply the above unitary map to it, then
=0

we obtain

N— 1 1 N-1 1
Z Bila) (-0) + /{2)\2|1>) ok Z ﬁjx|a’j>’0>+|¢>|]‘>a
i=0 j =0 7Y

kS

~~ -

olz)
N-1
where we do not care about the (sub-normalized) state |¢). Note that because Y, [3,;/A\;]* =
7=0
Z |8;]* = 1, the norm of the part of the state ending in qubit |1) is at least 1/k*. Ac-

182

cordingly, we can now apply O(k) rounds of amplitude amplification to amplify this part of
the state to have amplitude essentially 1. This prepares state |x), as intended. This rough
sketch is the basic idea of HHL. It leads to an algorithm that produces a state |Z) that is
e-close to |x), using roughly x?s/e queries to H and roughly xs(kn/e + B) other 2-qubit

gates.

8.2.1 Detailed quantum algorithm

The algorithm uses three quantum registers, all of them set to |0) at the beginning of the
algorithm. One register, which we will denote with the sub-index ny, is used to store a
binary representation of the eigenvalues of A. A second register, denoted by n;, contains
the vector solution, and from now on N = 2". There is an extra register, for the auxiliary
qubits. These are qubits used as intermediate steps in the individual computations but will
be ignored in the following description since they are set to |0) at the beginning of each
computation and restored back to the |0) state at the end of the individual operation.

The following is an outline of the HHL algorithm with a high-level drawing of the cor-

responding circuit. For simplicity all computations are assumed to be exact in the ensuing

description.
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

| | | | | |

o — : {AH——

| | Bigen- |! .

|On£> — EH value BEY t t t

— T R T T T

| | | inversion | | | | |

Na\ —— T . T

0%) = Load = QPE =R = QPE' = | an

| | | ! L F(x) |
oy = 1 e | | — s

| | | |

Figure 8.1: The quantum circuit of the HHL algorithm

Step 1: Load the data |by € CV; that is, perform the transformation [0™) — |b).

Step 2: Apply Quantum Phase Estimation (QPE) with

N-1
U= = ela;)al
=0

183

for a certain t (here we take t = 1). The quantum state of the register expressed in

N-1
the eigenbasis of A is now >} b;|A;), |a;); that is,
j=0 '

N-—1
QPE(U, [0")[by) = > bilAp,,, la;-
=0

Here we recall that |>\j>né is the n,-bit binary approximation of \; satisfying |>‘j>ne =
|[2"A]).

Step 3: Add an auxiliary qubit and apply a rotation conditioned on |/\j>nz’

N-1))
Z bj|/\j>ng|aj>< 1_/<;2/\2.|0>+/<)\j|1>>)
J=0 J

where £ is (an upper bound of) the condition number of A.

Step 4: Apply QPE' (that is, undo QPE). Ignoring possible errors from QPE, this results

1n
= 1 1
Z b;]0 Z>|aj>< 1_/<;2)\2|0>+/<)\j|1>> .
J=0 J

Step 5: Measure the auxiliary qubit in the computational basis. If the outcome is 1, the

register is in the post-measurement state

1
1 3 N—1 b;
_J |n"e)
(Z?zﬁ |bj|2|xj|—2> 2 0" e

=0

which up to a normalisation factor corresponds to the solution.
Step 6: Apply an observable M to calculate F(x) = (z|M|z).

Example 8.1. Consider solving the linear system Ax = b, where

A:{_ll/3 _11/3} and |b>:m.

The solution z = [9/8 3/8]T, and the corresponding QLSP is A|z) = |b).
We will use n, = 1 qubit to represent |b) and later the solution |x), n, = 2 qubits to
store the binary representation of the eigenvalues, and 1 auxiliary qubit to store whether

the conditioned rotation, hence the algorithm, was successful.

184

For the purpose of illustrating the algorithm, we will cheat a bit and calculate the
eigenvalues of A to be able to choose t to obtain an exact binary representation of the
rescaled eigenvalues in the n,-register. However, keep in mind that for the HHL algorithm
implementation one does not need previous knowledge of the eigenvalues. Having said that,
a short calculation will give Ay = 2/3 and Ay = 4/3.

Recall that the QPE will output an n,-bit (2-bit in this case) binary approximation

to 2"\;t. Therefore, if we set ¢ = Zﬂ the QPE will give a 2-bit binary approximation to

At 1 Aot 1 S .
21— ~and 2% = =, which is, respectively,
27 4 27 2

01),,, and 10),,, -

The eigenvectors are, respectively,

sl e sf]

Again, keep in mind that one does not need to compute the eigenvectors for the HHL

implementation.

We can then write |b) in the eigenbasis of A as

2
1
b)= > ——la;).
) JZ; \/5\ i)
Now we are ready to go through the different steps of the HHL algorithm.
Step 1: State preparation in this example is trivial since |b) = |0).

Step 2: Applying QPE will yield

1

V2

1

|01)|ur) + 7

[10)|uz) .

Step 3: Conditioned rotation with x = 8 which is bigger than the exact condition number.
Note, the constant s here needs to be chosen such that it is bigger than the smallest

(rescaled) eigenvalue of 14 but as small as possible so that when the auxiliary qubit is

185

measured, the probability of it being in the state |0) is large:

50 1>(8 01 2,11/42|1>)
fuo>|u2>(015 1/22|1>)
)

= oty (5100-+ 57 10) + 0y (10-+ 52

Step 4: After applying QPE' the quantum computer is in the state

1 1 V3 1 1 V15
— =] — - 21y .
5100t (5100 + 21 + Tolo0lus (F10-+ 2
Step 5: On outcome 0 when measuring the auxiliary qubit, the state is
1 1 1 1 1
———— [—=00)]u1)= [0) + —=1]00)|uz>=[0) | .
5 (o3l + 00

A quick calculation shows that

1 &

1
m(m’““ i) = Ty

Step 6: Without using extra gates, we can compute the norm of |z): it is the probability

of measuring 0 in the auxiliary qubit from the previous step

P = (55) +(35) ~ =

	Logic Circuits
	Classical Logic Gates
	The NOT gate
	The AND gate and the OR gate
	The NAND gate and the NOR gate
	The XOR gate and the XNOR gate
	The TOFFOLI gate

	Universal Gates
	How A Classical Computer Adds Numbers
	Binary numbers
	Adder using logic circuits

	Classical Circuits

	Quantum Computing
	Quantum Mechanics
	Schrödinger equation
	Superposition
	Measurement
	Unitary evolution

	Qubits and Quantum Gates
	Quantum bits
	Quantum gates

	Quantum Registers
	Tensor product of quantum registers - preview
	Entanglement

	Quantum Circuits
	Quantum Teleportation

	Universality of Various Sets of Elementary Gates
	Quantum Parallelism
	The Early Algorithms
	Deutsch-Jozsa
	Bernstein-Vazirani

	Mathematical Backgrounds
	Vector Spaces and Linear Maps
	Vector Spaces
	Linear maps and their matrix representation
	Algebraic dual spaces

	Direct Sum of Vector Spaces and Multi-Linear Maps
	Direct sum of vector spaces
	Multi-linear maps

	Inner Product Spaces and Hilbert Spaces
	Dual Spaces and Adjoint Operators
	Unitary Operators and Unitary Matrices
	Unitary operators
	Unitary matrices

	Quantum Mechanics
	Tensor Product of Vector Spaces
	Tensor product
	Correspondence between tensor product and quantum circuits
	More examples

	Unitary Decomposition
	1-qubit gate decomposition
	Singular value decomposition
	The CS decomposition
	Decomposition of arbitrary quantum gates

	Implementation of Multi-Controlled Rotation Gates

	Simon's Algorithm
	Simon's Problem
	The Quantum Algorithm
	Classical Algorithms for Simon's Problem
	Upper bound
	Lower bound

	The Fourier Transform
	The Classical Discrete Fourier Transform
	The Fast Fourier Transform
	Application: Multiplying Two Polynomials
	The Quantum Fourier Transform
	Application: phase estimation

	Shor's Factoring Algorithm
	RSA Encryption
	Mathematical foundation
	Encryption based on factoring large numbers

	Reduction from Factoring to Period-finding
	Shor's Period-finding Algorithm
	Continued fractions
	Efficiency of Shor's Algorithm
	Shor's period-finding algorithm
	The period of f(a) = xa mod N is most likely even

	Grover's Search Algorithm
	The Problem
	Grover's Algorithm
	Amplitude Amplification

	The HHL Algorithm
	The Linear System Problem
	The Basic HHL Algorithm for Linear Systems
	Detailed quantum algorithm

